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CONSTRUCTION AND ANALYSIS OF WEIGHTED

SEQUENTIAL SPLITTING FDTD METHODS FOR THE 3D

MAXWELL’S EQUATIONS

VRUSHALI A. BOKIL AND PUTTHA SAKKAPLANGKUL

Abstract. In this paper, we present a one parameter family of fully discrete Weighted Sequential
Splitting (WSS)-finite difference time-domain (FDTD) methods for Maxwell’s equations in three

dimensions. In one time step, the Maxwell WSS-FDTD schemes consist of two substages each
involving the solution of several 1D discrete Maxwell systems. At the end of a time step we take
a weighted average of solutions of the substages with a weight parameter θ, 0 ≤ θ ≤ 1. Similar
to the Yee-FDTD method, the Maxwell WSS-FDTD schemes stagger the electric and magnetic
fields in space in the discrete mesh. However, the Crank-Nicolson method is used for the time
discretization of all 1D Maxwell systems in our splitting schemes. We prove that for all values of θ,
the Maxwell WSS-FDTD schemes are unconditionally stable, and the order of accuracy is of first
order in time when θ 6= 0.5, and of second order when θ = 0.5. The Maxwell WSS-FDTD schemes
are of second order accuracy in space for all values of θ. We prove the convergence of the Maxwell

WSS-FDTD methods for all values of the weight parameter θ and provide error estimates. We
also analyze the discrete divergence of solutions to the Maxwell WSS-FDTD schemes for all values
of θ and prove that for θ 6= 0.5 the discrete divergence of electric and magnetic field solutions is
approximated to first order, while for θ = 0.5 we obtain a third order approximation to the exact
divergence. Numerical experiments and examples are given that illustrate our theoretical results.

Key words. Maxwell’s equations, Yee scheme, Crank-Nicolson method, operator splitting,
weighted sequential splitting.

1. Introduction

The electric and magnetic fields inside a material are governed by the macroscop-
ic Maxwell’s equations along with constitutive laws that account for the response
of the material to the incident electromagnetic (EM) field. The computational
simulation of electromagnetic interrogation problems, for the determination of the
dielectric properties of materials (such as permittivities and permeabilities), re-
quires the use of highly efficient forward simulations of the propagation of transient
electromagnetic waves in these media. Thus, a lot of research has concentrated on
the development of fully discrete forward solvers of Maxwell’s equations that are
accurate, consistent, stable, and computationally efficient.

The Yee scheme is a simple and efficient finite difference time domain (FDT-
D) method [28], and one of the most important numerical techniques for solving
Maxwell’s equations in the time domain. The Yee-FDTD method, first proposed
by Yee in 1966 [28], is an explicit scheme that employs staggered (uniform) grids in
both space and time for the electric and magnetic field components. On the stag-
gered grids, central difference approximations in space and time are constructed for
each component of the electric and magnetic fields in Maxwell’s equations which
gives second order accuracy in both space and time. The scheme is non-dissipative
for EM wave propagation in vacuum. The Yee scheme along with other discrete
methods have been extended to numerically solve Maxwell’s equations for EM wave
propagation in a variety of linear and nonlinear materials [1, 2, 3, 27], and applied
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to a wide variety of applications in nondestructive evaluation, optical simulations,
bioelectromagnetic simulations among others [11, 21, 25]. The Yee scheme has also
been extended to nonuniform meshes for EM propagation in a variety of materials
[15, 19, 20].

The most limiting aspect of the Yee scheme is the fact that the time step △t and
the spatial step sizes△x,△y and△z must satisfy a Courant-Friedrichs-Lewy (CFL)
stability condition [26, 27]. The conditionally stable Yee scheme has a stability
condition that is determined by the smallest cell size in the domain. For geometries
which include features that are smaller than the wavelengths of typical interrogating
pulses, fine scale spatial resolution is required to resolve small features. For example,
to study the effect of microwaves on brain cells, the size of geometrical features can
be five orders of magnitude smaller than a typical wave length [14]. In this case,
the conditionally stable Yee scheme requires a very small time step in the entire
domain to resolve the smallest spatial scales. Thus, the FDTD analysis of very
fine geometric structures via the Yee scheme can require a large number of time
iterations and long computation times.

The Crank-Nicolson (CN) FDTD method for the numerical simulation of the
time domain Maxwell’s equations is an implicit FDTD technique and is uncondi-
tionally stable [22, 23, 24]. Unconditionally stable schemes are well suited for prob-
lems involving geometries needing different details of discretization such as narrow
slots [13]. For geometries requiring fine scale spatial resolution, non-uniform mesh-
ing techniques can be created by using locally small spatial increments which do
not require extremely small time steps in the entire domain in an unconditionally
stable scheme [9]. The implicit nature of the CN-FDTD method allows the time
step to be chosen based on just accuracy requirements and not stability, and is thus
a well suited scheme for the simulation of EM wave propagation in geometries with
fine details. However, the CN method is computationally more intensive than the
Yee scheme as it requires the solution of a large linear (3D spatial) system at every
time step rather than a matrix vector multiplication as in the explicit Yee scheme
[22, 23, 24].

The operator splitting method [10] is a powerful tool to solve multi-dimensional
and multi-physics problems. In this approach, we replace the original problem in-
volving a complicated operator into a sequence of sub-problems each involving a
single operator that models a single physical process. The sub-problems communi-
cate via their initial conditions and an approximation to the solution of the original
problem is obtained by combining the solutions of sub-problems. Operator splitting
methods are classified based on how the sequence of sub-problems are solved and
how these sub or intermediate solutions are combined to approximate the solution of
the original problem, which also determines the accuracy of the splitting technique.
The classical operator splittings, which include sequential splitting, the Strang-
Marchuk splitting, the alternating direction implicit (ADI-FDTD) scheme [13], a-
mong others, are popular splitting methods for solving complex time-dependent
problems. These splitting techniques can offer additional reductions in computa-
tional time over fully implicit methods like the CN scheme while preserving the
property of unconditional stability. By using the sequential and symmetrized split-
ting methods, Chen, Li, and Liang presented the energy-conserved splitting FDTD
methods for the free space Maxwell’s equations in two- [6] and three-dimensions [7].
The sequential splitting method gives low accuracy in time although its algorithm
has a simple structure. As shown in [6, 7], the order of accuracy of a sequential
splitting FDTD method for Maxwell’s equations is of the first order in time and
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the second order in space; The Strang-Marchuk splitting FDTD method is more
accurate than the sequential splitting FDTD method but is more computational-
ly intensive [10]. Operator splitting methods for Maxwell’s equations in complex
materials have also been considered; see for e.g., [4, 16, 17].

In this paper we use the Weighted Sequential Splitting (WSS) technique [10],
that is a generalization of the sequential splitting method, to construct a family
of fully discrete WSS-FDTD schemes (Maxwell WSS-FDTD) for the numerical ap-
proximation of the three dimensional time domain Maxwell’s equations in a linear
non-dispersive, non-dissipative medium such as a vacuum. The Maxwell WSS-FDTD

methods are constructed using a weighted average of two sequential splitting meth-
ods with a weight parameter θ ∈ [0, 1]. For the spatial discretization we stagger
the electric and magnetic field components in space, as is done in the Yee-FDTD
method. As opposed to the Yee-FDTD method, we use the Crank-Nicolson dis-
cretization in time. For the trivial case of the weight parameter θ = 0 or 1 we
recover the sequential splitting schemes constructed in [6, 7], which are first or-
der accurate in time. The interesting case of θ = 0.5, is called the Symmetrically
Weighted Sequential Splitting (Maxwell SWSS-FDTD), and results in a scheme that
is second order accurate in time. For values of θ other than 0.5 we obtain dis-
crete schemes that have first order accuracy in time. For all values of θ ∈ [0, 1], the
Maxwell WSS-FDTD schemes are second order accurate in space due to the staggered
nature of the spatial discretization.

We show that our fully discrete Maxwell WSS-FDTD methods are unconditionally
stable via an energy analysis and prove the convergence of the methods for all
values of the weight parameter θ. The Maxwell WSS-FDTD schemes are dissipative
for θ ∈ (0, 1). However, we show that the energy decay in time is of higher order
accuracy than the temporal and spatial accuracy of the schemes. We also analyze
the discrete divergence of the electric and the magnetic field solutions produced by
our discrete schemes. The Maxwell WSS-FDTD schemes approximate the divergence
of the electromagnetic fields to first order for θ 6= 0.5 and to third order for θ = 0.5,
a distinct advantage over the Strang symmetrized scheme in [7], that approximates
the exact divergence to second order accuracy. All our theoretical results for the
Maxwell WSS-FDTD schemes are illustrated by numerical experiments.

The outline of this paper is as follows. In Section 2, we present the Weighted Se-
quential Splitting (WSS) technique for a general initial value problem. In Section 3,
we consider the three dimensional time domain Maxwell’s equations modeling elec-
tromagnetic wave propagation in a linear non-dispersive, non-dissipative medium.
We then present discrete in time and continuous in space WSS schemes (Maxwell
WSS) for Maxwell’s equations in Section 4. The fully discrete Maxwell WSS-FDTD

schemes are presented in Section 5. The stability, and convergence analysis of the
fully discrete schemes are presented in Sections 6 and 7, respectively. In Section 6,
we also analyze in detail the discrete energy decay in our methods. In Section 8, we
analyze the discrete divergence of the solution produced by the Maxwell WSS-FDTD

methods. In Section 9 we present numerical simulations that demonstrate our the-
oretical results, and conclude in Section 10.
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Figure 1. Two time iterations of the Weighted Sequential Split-
ting Algorithm for d = 2.

2. Weighted Sequential Splitting (WSS) Schemes

Let d ∈ N, d ≥ 2. Consider the following system of differential equations in the
Banach space X:

(1)





d

dt
W (t) = AW (t) =

(
d∑

i=1

Ai

)
W (t); t ∈ (0, T ],

W (0) = W0,

where W : [0, T ] → X, for T > 0, is the unknown solution, W0 ∈ X, and the

operators A,Ai : X → X (i = 1, 2, ..., d) are such that A =

d∑

i=1

Ai.

The classical operator splitting methods that are commonly used for the time
discretization of partial differential equations (PDEs) are the first order sequential
splitting scheme, and the second order Strang-Marchuk symmetrized scheme [10].
These splitting methods require the solution of several sub-problems corresponding
to the sub-operators Ai. However, the low accuracy of the sequential splitting
method and the computational complexity of the Strang-Marchuk symmetrized
splitting motivates the investigation of alternative splitting methods.

In this paper, we consider the weighted sequential splitting (WSS) method [10]
which generalizes the sequential splitting technique by using a weighted average
of two sequential splitting solutions. In other words, for each time step we apply
two sequential splittings in the following manner: A1 → A2 → ... → Ad and
Ad → Ad−1 → ... → A1. At the end of the time step we take a weighted average
of solutions of the two different sequential splittings with a weight parameter θ,
0 ≤ θ ≤ 1.

We choose a time step ∆t > 0 and define tn = n∆t for n = 0, 1, . . . , N , with
N = T/∆t. Using ∆t we partition the time interval [0, T ] as

0 = t0 < t1 < t2 < . . . < tn < . . . < tN = N∆t = T.

For 0 ≤ θ ≤ 1, let Wθ(t
n) denote the solution of the WSS method applied to

problem (1) at time tn ∈ [0, T ] at the nth step. The algorithm for the WSS method
is given in Algorithm 1.

In Figure 1, we illustrate the WSS scheme over two time intervals for d = 2. The
weighted parameters θ = 0 and θ = 1 recover the basic sequential splitting. The
WSS scheme for the case θ = 0.5 is called the Symmetrically Weighted Sequential
Splitting (SWSS).
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Data: Given Wθ(t
0 = 0) = W0

Result: Obtain Wθ(t
N )

begin

For n = 0, 1, 2, ..., N − 1;

v0(t
n+1) = u0(t

n+1) = Wθ(t
n);

For i = 1, 2, ..., d ;

Step Ai: Solve for vi(t), t ∈ [tn, tn+1] in




d

dt
vi(t) = Aivi(t),

vi(t
n) = vi−1(t

n+1).

Step Bi: Solve for ui(t), t ∈ [tn, tn+1] in




d

dt
ui(t) = Ad+1−iui(t),

ui(t
n) = ui−1(t

n+1),

end

Wθ(t
n+1) = θud(t

n+1) + (1− θ)vd(t
n+1).

end

end
Algorithm 1: Weighted Sequential Splitting (WSS).

Operator Splitting methods are special time discretization techniques. Thus, in
analogy with local truncation error (LTE), we define the notion of local splitting
error [10].

Definition 1. For an operator splitting method, the error that arises at the end of
the first step, denoted by τθ, defined as

τθ(W0,∆t) = W (t1)−Wθ(t
1),

is defined as the local splitting error of the operator splitting method.

An operator splitting method is of order p (in time) for some p > 0 if its local
splitting error τθ(W0,∆t) = O((∆t)p+1) where ∆t is the time step. As shown
in ([8],[10]), the local splitting error of the weighted sequential splitting can be
expressed as

τθ(W0,∆t) = (∆t)2(θ − 0.5)
d∑

i,j=1

i<j

[
Ai, Aj

]
W0 +O(∆t3),(2)

where
[
Ai, Aj

]
= AiAj − AjAi, is the commutator of the operators Ai and Aj .

Thus, we have the following result.

Theorem 1. (Theorem 3.3 in [10]) For arbitrary operators, the weighted sequential
splitting method has first order of accuracy (in time) for any θ 6= 0.5. The choice
θ = 0.5 (SWSS) provides a second order accurate splitting method in time.
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In the next section we present Maxwell’s equations in a non-dispersive, non-
conductive (non-dissipative) linear dielectric and then construct a weighted sequen-
tial splitting scheme for this system.

3. Maxwell’s Equations

The classical three dimensional Maxwell’s equations are derived from physical
laws that govern the evolution of the electromagnetic field, connecting the electric
field intensity E = (Ex, Ey, Ez)

T , the magnetic field intensity H = (Hx, Hy, Hz)
T ,

the magnetic flux density B = (Bx, By, Bz)
T and the electric flux density D =

(Dx, Dy, Dz)
T . Let Ω ⊂ R

3 be a bounded region. On the space-time region Ω ×
(0, T ] with T > 0, Maxwell’s equations, assuming a source free region Ω, are given
as

∂

∂t
D = curlH,(3a)

∂

∂t
B = −curlE,(3b)

∇ ·B = 0,(3c)

∇ ·D = 0,(3d)

along with initial conditions on all fields. All vector field variables (and their scalar
components) are functions of space, x = (x, y, z)T and time, t. The magnetic (B)
and electric (D) flux densities defined on Ω× [0, T ] satisfy constitutive relations for
linear, isotropic and non-dispersive materials given as

(4) B = µ0H and D = ǫE,

where ǫ is the frequency-independent (non-dispersive) electric permittivity of the
dielectric and µ0 is the magnetic permeability of free space. In this paper, we will
assume that ǫ is a constant depending on the linear, isotropic, and non-dispersive
material through which the EM waves propagate. We assume the Perfect Electrical
Conductor (PEC) boundary condition

(5) E× ~n = 0, on, ∂Ω× [0, T ],

where ~n is the unit outward normal vector to the boundary ∂Ω. We can rewrite
Maxwell’s equations (3) on Ω× (0, T ] in the form

∂

∂t

(
ǫE

µ0H

)
= A

(
E
H

)
,(6)

where the operator A is defined as

A =

(
0 curl

−curl 0

)
, curl =




0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0


 .

Poynting’s theorem states that the energy of electromagnetic waves in lossless
media with the PEC boundary condition is constant for all time (energy conser-
vation). We state the following lemmas without proof, and refer the reader to the
papers [5, 7, 12, 18] for details.

Lemma 1. (Energy conservation I). Let E and H be the solution to the Maxwell’s
equations (6) in a lossless medium and satisfy the PEC boundary condition (5).
Then, for all t ≥ 0 we have∫

Ω

(
ǫ|E(x, t)|2 + µ0|H(x, t)|2

)
dx ≡ constant.
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Lemma 2. (Energy conservation II). Let E and H be the solution to the Maxwell’s
equations (6) in a lossless medium and satisfy the PEC boundary condition. Then,
for all t ≥ 0 we have

∫

Ω

(
ǫ
∣∣∣∂E(x, t)

∂t

∣∣∣
2

+ µ0

∣∣∣∂H(x, t)

∂t

∣∣∣
2
)

dx ≡ constant.

In the rest of the paper, without loss of generality we will assume that ǫ = 1 and
µ0 = 1. Since the operator A generates a C0 semigroup [10], the exact solution of
the problem (6) can be expressed as

(
E(t)
H(t)

)
= eAt

(
E(0)
H(0)

)
, ∀t ∈ [0, T ].

As done in [7, 18], we decompose the curl operator curl into two sub-operators
curl+ and curl− as

curl = curl+ + curl−,(7)

where curl+ and curl− are, respectively, defined as

curl+ :=




0 0 ∂y
∂z 0 0
0 ∂x 0


 and curl− :=




0 −∂z 0
0 0 −∂x

−∂y 0 0


 .

The operator curl is antisymmetric, and operators curl+ and curl− are related as

curl+ = −(curl−)T .

Another possible decomposition of the operator curl is [7, 18]

(8) curl = curlx + curly + curlz,

where curlα is the operator related to ∂α with α ∈ {x, y, z} (see [7]):

curlx =



0 0 0
0 0 −∂x
0 ∂x 0


 , curly =




0 0 ∂y
0 0 0

−∂y 0 0


 , and curlz =




0 −∂z 0
∂z 0 0
0 0 0


 .

The WSS algorithm that is constructed in this paper is for decomposition (7).
This algorithm can be extended to the decomposition (8). However, since the
number of sub-operators are different in the two decompositions additional details
will be involved in the analysis of the second decomposition (8). We do not consider
decomposition (8) or its analysis in this paper. Henceforth, we restrict our attention
to decomposition (7) of the curl operator.

4. Weighted Sequential Splittings for Maxwell’s Equations

In this section, we apply the weighted sequential splitting (WSS) method, given
in Algorithm 1, to the three dimensional Maxwell’s equations (6) by extending the
ideas from [6] and [7] in which sequential splitting for two and three dimensional
Maxwell’s equations, respectively, were constructed based on the decomposition
of the operator curl given by equation (7). We decompose operator A in (6) as
A = A+ +A− where

(9) A+ =

(
0 curl+

(curl+)T 0

)
and A− =

(
0 curl−

(curl−)T 0

)
.
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For 0 ≤ θ ≤ 1, we denote the solution of the corresponding weighted sequential
splitting for Maxwell’s curl equations (6) with the decomposition (9) as Wθ(t), at
time t ∈ (0, t], where

Wθ(t) =

(
Eθ(t)
Hθ(t)

)
.

For i = 0, 1, 2, we also denote intermediate variables Vi(t), and Ui(t) at time
t ∈ [0, t] as

Vi(t) =

(
E(i)(t)
H(i)(t)

)
,Ui(t) =

(
Ê(i)(t)

Ĥ(i)(t)

)
.

The weighted sequential splitting algorithm for Maxwell’s equations (6), which we
call Maxwell WSS, corresponding to the splitting (7) and (9) of the operator A, can
be written as the following two stage method which we describe below in Algorithm
2.

Thus, in every time interval [tn, tn+1], the Maxwell WSS algorithm solves the
following sub-systems in the two stages with proper initialization.
Stage 1 :

V1︷ ︸︸ ︷
∂

∂t

(
E(1)

H(1)

)
= A+

(
E(1)

H(1)

)
and

U1︷ ︸︸ ︷
∂

∂t

(
Ê(1)

Ĥ(1)

)
= A−

(
Ê(1)

Ĥ(1)

)
.(10)

Stage 2 :

V2︷ ︸︸ ︷
∂

∂t

(
E(2)

H(2)

)
= A−

(
E(2)

H(2)

)
and

U2︷ ︸︸ ︷
∂

∂t

(
Ê(2)

Ĥ(2)

)
= A+

(
Ê(2)

Ĥ(2)

)
.(11)

Written in scalar form, and redistributed, the above systems result in six decoupled
one-dimensional Maxwell systems, three in each stage. These are:

Stage 1:

A+

A−





∂

∂t

(
E

(1)
x

H
(1)
z

)
=

∂

∂y

(
H

(1)
z

E
(1)
x

)
,

∂

∂t

(
Ê

(1)
z

Ĥ
(1)
x

)
= − ∂

∂y

(
Ĥ

(1)
x

Ê
(1)
z

)
,





∂

∂t

(
E

(1)
y

H
(1)
x

)
=

∂

∂z

(
H

(1)
x

E
(1)
y

)
,

∂

∂t

(
Ê

(1)
x

Ĥ
(1)
y

)
= − ∂

∂z

(
Ĥ

(1)
y

Ê
(1)
x

)
,





∂

∂t

(
E

(1)
z

H
(1)
y

)
=

∂

∂x

(
H

(1)
y

E
(1)
z

)
,

∂

∂t

(
Ê

(1)
y

Ĥ
(1)
z

)
= − ∂

∂x

(
Ĥ

(1)
z

Ê
(1)
y

)
,

Stage 2:

A−

A+





∂

∂t

(
E

(2)
x

H
(2)
y

)
= − ∂

∂z

(
H

(2)
y

E
(2)
x

)
,

∂

∂t

(
Ê

(2)
y

Ĥ
(2)
x

)
=

∂

∂z

(
Ĥ

(2)
x

Ê
(2)
y

)
,





∂

∂t

(
E

(2)
y

H
(2)
z

)
= − ∂

∂x

(
H

(2)
z

E
(2)
y

)
,

∂

∂t

(
Ê

(2)
z

Ĥ
(2)
y

)
=

∂

∂x

(
Ĥ

(2)
y

Ê
(2)
z

)
,





∂

∂t

(
E

(2)
z

H
(2)
x

)
= − ∂

∂y

(
H

(2)
x

E
(2)
z

)
,

∂

∂t

(
Ê

(2)
x

Ĥ
(2)
z

)
=

∂

∂y

(
Ĥ

(2)
z

Ê
(2)
x

)
.

5. Fully Discrete WSS Methods for Maxwell’s Equations

5.1. Spatial and Temporal Discretization. We consider a cubic spatial domain Ω =
[0, a]× [0, b]× [0, c] ⊂ R

3 for a, b, c > 0 and time interval [0, T ] with T > 0. We discretize
Ω by using spatial step sizes △x > 0,△y > 0 and △z > 0 along the x, y, and z axis,
respectively. The time interval [0, T ] is discretized with time step △t > 0. Let I, J , K
and N be positive integers such that I = a/∆x, J = b/∆y, K = c/∆z, and N = T/∆t.
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Data: Given θ ∈ [0, 1], Wθ(t
0 = 0) = W0 = (E0,H0)

T , with Eθ(t
0 = 0) = E0

satisfying (5).
Result: Obtain Wθ(t

N ) = (Eθ(t
N ),Hθ(t

N ))T , with Eθ(t
N ) satisfying (5).

begin

For n = 0, 1, 2, ..., N − 1;

V0(t
n+1) = U0(t

n+1) = Wθ(t
n);

Stage 1:
Step A1: Solve for V1(t), t ∈ [tn, tn+1] in





d

dt
V1(t) = A+V1(t),

V1(t
n) = V0(t

n+1).

Step B1: Solve for U1(t), t ∈ [tn, tn+1] in




d

dt
U1(t) = A−U1(t),

U1(t
n) = U0(t

n+1).

Stage 2:
Step A2: Solve for V2(t), t ∈ [tn, tn+1] in





d

dt
V2(t) = A−V2(t),

V2(t
n) = V1(t

n+1).

Step B2: Solve for U2(t), t ∈ [tn, tn+1] in




d

dt
U2(t) = A+U2(t),

U2(t
n) = U1(t

n+1).

Wθ(t
n+1) = θU2(t

n+1) + (1− θ)V2(t
n+1).

end

end
Algorithm 2: Maxwell Weighted Sequential Splitting (Maxwell WSS).

For 0 ≤ i ≤ I, 0 ≤ j ≤ J , 0 ≤ k ≤ K, and 0 ≤ n ≤ N , we define the following discrete
grid points in time and space:

tn = n△t, tn+ 1
2 =

(
n+

1

2

)
△t, n = 0, 1, 2, ..., N − 1, tN = N△t = T,

xi = i△x, xi+ 1
2
=
(
i+

1

2

)
△x, i = 0, 1, 2, ..., I − 1, xI = I△x = a,

yj = j△y, yj+ 1
2
=
(
j +

1

2

)
△y, j = 0, 1, 2, ..., J − 1, yJ = J△y = b,

zk = k△z, zk+ 1
2
=
(
k +

1

2

)
△z, k = 0, 1, 2, ...,K − 1, zK = K△z = c,
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Let i, j, k, n ∈ N. We discretize the x, y, z, and t axes, respectively, as

0 = x0 ≤ x1 ≤ · · · ≤ xi ≤ · · · ≤ xI = a,(12)

0 = y0 ≤ y1 ≤ · · · ≤ yj ≤ · · · ≤ yJ = b,(13)

0 = z0 ≤ z1 ≤ · · · ≤ zk ≤ · · · ≤ zK = c,(14)

0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ tN = T.(15)

Let F be one of the field variables Hκ, or Eκ, for κ ∈ {x, y, z}. In our discrete splitting
scheme we stagger the electric and magnetic fields in space. We define the discrete meshes

ΩEx
h :=

{(
xi+ 1

2
, yj , zk

) ∣∣ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ k ≤ K
}
,(16)

Ω
Ey

h :=
{(

xi, yj+ 1
2
, zk
) ∣∣ 0 ≤ i ≤ I, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K

}
,(17)

ΩEz
h :=

{(
xi, yj , zk+ 1

2

) ∣∣ 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K − 1
}
,(18)

ΩHx
h :=

{(
xi, yj+ 1

2
, zk+ 1

2

) ∣∣ 0 ≤ i ≤ I, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1
}
,(19)

Ω
Hy

h :=
{(

xi+ 1
2
, yj , zj+ 1

2

) ∣∣ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ k ≤ K − 1
}
,(20)

ΩHz
h :=

{(
xi+ 1

2
, yj+ 1

2
, zk
) ∣∣ 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K

}
,(21)

where ΩF
h is the set of spatial grid points on which the F field is discretized. These

discretized values are the Degrees of Freedom (DoF) of F . Similar to the Yee scheme, for
the discretization of the three dimensional Maxwell’s equations, the DoF for the electric
field component Eκ are at the midpoint of edges oriented in the κ−direction while the
DoF for the magnetic field Hκ are at centers of faces of cubes which are normal to the
κ−direction. In other words, Eκ is discretized at a half-integer grid point in the κ direction
and at integer grid points in the other two directions; Hκ is discretized at an integer grid
point in the κ direction and at half-integer grid points in the other two directions.

Let m be either n or n+ 1
2
, n ∈ N. We use the notation F (tm) to denote the continuous

function F on the domain Ω at time tm, and the notation Fm to denote the corresponding
grid function on its discrete spatial mesh ΩF

h at time tm. Let (xα, yβ , zγ) ∈ ΩF
h , where

depending on F , α is either i or i + 1
2
, β is either j or j + 1

2
, γ is either k or k + 1

2
, and

i, j, k ∈ N. For m ∈ N, we define the grid function Fm to be an approximation to F (tm)
on the grid ΩF

h . Thus, F
m is the set of values

{Fm
α,β,γ ≈ F (xα, yβ , zγ , t

m), (xα, yβ , zγ) ∈ ΩF
h }.(22)

On the discretized mesh the PEC boundary condition (5) on the electric field can be
expressed in scalar form as the following sets of conditions on the DoF of components of
the electric field:

En
x
i+1

2
,0,k

= En
x
i+1

2
,J,k

= En
x
i+1

2
,j,0

= En
x
i+1

2
,j,K

= 0,

En
y
0,j+1

2
,k

= En
y
I,j+1

2
,k

= En
y
i,j+1

2
,0

= En
y
i,j+1

2
,K

= 0,(23)

En
z
0,j,k+1

2

= En
z
I,j,k+1

2

= En
z
i,0,k+1

2

= En
z
i,J,k+1

2

= 0.

for i = 0, 1, 2, ..., I − 1, j = 0, 1, 2, ..., J − 1, and k = 0, 1, 2, ...,K − 1.

5.2. Discrete Differential Operators and Discrete Norms. The centered difference
operators in time and space are defined in a standard way (see [7]) as

(δtF )mα,β,γ =
F

m+ 1
2

α,β,γ − F
m− 1

2

α,β,γ

∆t
, (δxF )mα,β,γ =

Fm
α+ 1

2
,β,γ

− Fm
α− 1

2
,β,γ

∆x
,

(δyF )mα,β,γ =
Fm
α,β+ 1

2
,γ

− Fm
α,β− 1

2
,γ

∆y
, (δzF )mα,β,γ =

Fm
α,β,γ+ 1

2

− Fm
α,β,γ− 1

2

∆z
.
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We define the discrete curl operators corresponding to the continuous curl operators as:

curl+h =




0 0 δy
δz 0 0
0 δx 0


 , and curl−h =




0 −δz 0
0 0 −δx

−δy 0 0


 ,

then curlh and Ah are defined respectively as

curlh = curl+h + curl−h , and Ah = A+
h +A−

h ,

where

A+
h =

(
0 curl+h

(curl+h )
T 0

)
, and A−

h =

(
0 curl−h

(curl−h )
T 0

)
.

Let F = (Fα,β,γ), and G = (Gα,β,γ) be scalar fields, both being components of electric
fields or both components of magnetic fields, with α, β, γ as described above. We define a
discrete inner product of the two fields as

(24) 〈F,G〉 =
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

Fα,β,γGα,β,γ∆x∆y∆z.

For vector fields F = (Fx, Fy, Fz)
T , and G = (Gx, Gy, Gz)

T , (either both electric fields or
both magnetic fields), their inner product is defined using (24) as

(25) 〈F,G〉 = 〈Fx, Gx〉+ 〈Fy, Gy〉+ 〈Fz, Gz〉.

Each inner product induces a normed vector space on the spaces of discrete electric or
magnetic fields, with a discrete L2 norm for a scalar field, Fℓ, defined as

(26) ‖Fℓ‖2 =

I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

∣∣Fℓα,β,γ

∣∣2 ∆x∆y∆z, ℓ ∈ {x, y, z},

and, using (26), a discrete L2 norm for the vector field F defined as

(27) ‖F‖2 = ‖Fx‖2 + ‖Fy‖2 + ‖Fz‖2 .

5.3. The Maxwell WSS-FDTD Schemes. We will denote the solution of the fully
discretized Maxwell WSS-FDTD scheme for Maxwell’s equations as Wn

θ = (En
θ ,H

n
θ )

T ≈
Wθ(t

n) at time tn, for θ ∈ [0, 1], initialized by

E0
θ = E0 ≈ E(0) and H0

θ = H0 ≈ H(0),

where En
θ = (En

θ,x, E
n
θ,y, E

n
θ,z)

T , and Hn
θ = (Hn

θ,x, H
n
θ,y, H

n
θ,z)

T . To keep the notation
simple, we continue to denote the components of the intermediate variables in the fully
discretized Maxwell WSS-FDTD scheme as E(i) and H(i), for i = 1, 2. On every time sub-
interval [tn, tn+1], using the Crank Nicolson scheme to discretize in time and staggering
the electric and magnetic fields in space, the fully discretized Maxwell-WSS-FDTD schemes
are described in Algorithm 3
In Algorithm 3, we compute the solution of the Maxwell WSS-FDTD method for given
θ ∈ [0, 1] at time tn+1 by taking a weighted average of solutions obtained at the end of the
two stages with weight parameter θ, 0 ≤ θ ≤ 1. Scalar forms of the systems to be solved
in the two stages are:
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Data: Given θ ∈ [0, 1], W0
θ = (E0

θ,H
0
θ)

T , with E0
θ = E0 satisfying (23), and

H0
θ = H0.

Result: Obtain WN
θ = (EN

θ ,HN
θ )T with EN

θ satisfying (23)
begin

For n = 0, 1, 2, ..., N − 1;

Solve for En+1
θ , and Hn+1

θ , from the two stages
Stage 1:

1

∆t

[(
E(1)

H(1)

)
−
(
En

θ

Hn
θ

)]
=

1

2
A+

h

[(
E(1)

H(1)

)
+

(
En

θ

Hn
θ

)]
,(28a)

1

∆t

[(
Ê(1)

Ĥ(1)

)
−
(
En

θ

Hn
θ

)]
=

1

2
A−

h

[(
Ê(1)

Ĥ(1)

)
+

(
En

θ

Hn
θ

)]
.(28b)

Stage 2:

1

∆t

[(
E(2)

H(2)

)
−
(
E(1)

H(1)

)]
=

1

2
A−

h

[(
E(2)

H(2)

)
+

(
E(1)

H(1)

)]
,(29a)

1

∆t

[(
Ê(2)

Ĥ(2)

)
−
(
Ê(1)

Ĥ(1)

)]
=

1

2
A+

h

[(
Ê(2)

Ĥ(2)

)
+

(
Ê(1)

Ĥ(1)

)]
.(29b)

En+1
θ = θE(2) + (1− θ)Ê(2) and Hn+1

θ = θH(2) + (1− θ)Ĥ(2).
end

end

Algorithm 3: Maxwell WSS FDTD Scheme (Maxwell WSS-FDTD)
for θ ∈ [0, 1].

Stage 1:

1

∆t

(
E

(1)
x
i+1

2
,j,k

− En
θ,x

i+1
2
,j,k

H
(1)
z
i+1

2
,j+1

2
,k

−Hn
θ,z

i+1
2
,j+1

2
,k

)
=

1

2

(
(δyH

(1)
z )i+ 1

2
,j,k + (δyH

n
θ,z)i+ 1

2
,j,k

(δyE
(1)
x )i+ 1

2
,j+ 1

2
,k + (δyEn

θ,x)i+ 1
2
,j+ 1

2
,k

)
,(30)

1

∆t

(
Ê

(1)
z
i,j,k+1

2

− En
θ,z

i,j,k+1
2

Ĥ
(1)
x
i,j+1

2
,k+1

2

−Hn
θ,x

i,j+1
2
,k+1

2

)
=

−1

2

(
(δyĤ

(1)
x )i,j,k+ 1

2
+ (δyH

n
θ,x)i,j,k+ 1

2

(δyÊ
(1)
z )i,j+ 1

2
,k+ 1

2
+ (δyEn

θ,z)i,j+ 1
2
,k+ 1

2

)
,

(31)

1

∆t

(
E

(1)
y
i,j+1

2
,k

− En
θ,y

i,j+1
2
,k

H
(1)
x
i,j+1

2
,k+1

2

−Hn
θ,x

i,j+1
2
,k+1

2

)
=

1

2

(
(δzH

(1)
x )i,j+ 1

2
,k + (δzH

n
θ,x)i,j+ 1

2
,k

(δzE
(1)
y )i,j+ 1

2
,k+ 1

2
+ (δzEn

θ,y)i,j+ 1
2
,k+ 1

2

)
,(32)

1

∆t

(
Ê

(1)
x
i+1

2
,j,k

− En
θ,x

i+1
2
,j,k

Ĥ
(1)
y
i+1

2
,j,k+1

2

−Hn
θ,y

i+1
2
,j,k+1

2

)
=

−1

2

(
(δzĤ

(1)
y )i+ 1

2
,j,k + (δzH

n
θ,y)i+ 1

2
,j,k

(δzÊ
(1)
x )i+ 1

2
,j,k+ 1

2
+ (δzEn

θ,x)i+ 1
2
,j,k+ 1

2

)
,

(33)

1

∆t

(
E

(1)
z
i,j,k+1

2

− En
θ,z

i,j,k+1
2

H
(1)
y
i+1

2
,j,k+1

2

−Hn
θ,y

i+1
2
,j,k+1

2

)
=

1

2

(
(δxH

(1)
y )i,j,k+ 1

2
+ (δxH

n
θ,y)i,j,k+ 1

2

(δxE
(1)
z )i+ 1

2
,j,k+ 1

2
+ (δxEn

θ,z)i+ 1
2
,j,k+ 1

2

)
,(34)

1

∆t

(
Ê

(1)
y
i,j+1

2
,k

− En
θ,y

i,j+1
2
,k

Ĥ
(1)
z
i+1

2
,j+1

2
,k

−Hn
θ,z

i+1
2
,j+1

2
,k

)
=

−1

2

(
(δxĤ

(1)
z )i,j+ 1

2
,k + (δxH

n
θ,z)i,j+ 1

2
,k

(δxÊ
(1)
y )i+ 1

2
,j+ 1

2
,k + (δxEn

θ,y)i+ 1
2
,j+ 1

2
,k

)
.

(35)
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Stage 2:

1

∆t

(
E

(2)
x
i+1

2
,j,k

− E
(1)
x
i+1

2
,j,k

H
(2)
y
i+1

2
,j,k+1

2

−H
(1)
y
i+1

2
,j,k+1

2

)
=

−1

2

(
(δzH

(2)
y )i+ 1

2
,j,k + (δzH

(1)
y )i+ 1

2
,j,k

(δzE
(2)
x )i+ 1

2
,j,k+ 1

2
+ (δzE

(1)
x )i+ 1

2
,j,k+ 1

2

)
,(36)

1

∆t

(
Ê

(2)
y
i,j+1

2
,k

− Ê
(1)
y
i,j+1

2
,k

Ĥ
(2)
x
i,j+1

2
,k+1

2

− Ĥ
(1)
x
i,j+1

2
,k+1

2

)
=

1

2

(
(δzĤ

(2)
x )i,j+ 1

2
,k + (δzĤ

(1)
x )i,j+ 1

2
,k

(δzÊ
(2)
y )i,j+ 1

2
,k+ 1

2
+ (δzÊ

(1)
y )i,j+ 1

2
,k+ 1

2

)
,(37)

1

∆t

(
E

(2)
y
i,j+1

2
,k

− E
(1)
y
i,j+1

2
,k

H
(2)
z
i+1

2
,j+1

2
,k

−H
(1)
z
i+1

2
,j+1

2
,k

)
=

−1

2

(
(δxH

(2)
z )i,j+ 1

2
,k + (δxH

(1)
z )i,j+ 1

2
,k

(δxE
(2)
y )i+ 1

2
,j+ 1

2
,k + (δxE

(1)
y )i+ 1

2
,j+ 1

2
,k

)
,(38)

1

∆t

(
Ê

(2)
z
i,j,k+1

2

− Ê
(1)
z
i,j,k+1

2

Ĥ
(2)
y
i+1

2
,j,k+1

2

− Ĥ
(1)
y
i+1

2
,j,k+1

2

)
=

1

2

(
(δxĤ

(2)
y )i,j,k+ 1

2
+ (δxĤ

(1)
y )i,j,k+ 1

2

(δxÊ
(2)
z )i+ 1

2
,j,k+ 1

2
+ (δxÊ

(1)
z )i+ 1

2
,j,k+ 1

2

)
,(39)

1

∆t

(
E

(2)
z
i,j,k+1

2

− E
(1)
z
i,j,k+1

2

H
(2)
x
i,j+1

2
,k+1

2

−H
(1)
x
i,j+1

2
,k+1

2

)
=

−1

2

(
(δyH

(2)
x )i,j,k+ 1

2
+ (δyH

(1)
x )i,j,k+ 1

2

(δyE
(2)
z )i,j+ 1

2
,k+ 1

2
+ (δyE

(1)
z )i,j+ 1

2
,k+ 1

2

)
,

(40)

1

∆t

(
Ê

(2)
x
i+1

2
,j,k

− Ê
(1)
x
i+1

2
,j,k

Ĥ
(2)
z
i+1

2
,j+1

2
,k

− Ĥ
(1)
z
i+1

2
,j+1

2
,k

)
=

1

2

(
(δyĤ

(2)
z )i+ 1

2
,j,k + (δyĤ

(1)
z )i+ 1

2
,j,k

(δyÊ
(2)
x )i+ 1

2
,j+ 1

2
,k + (δyÊ

(1)
x )i+ 1

2
,j+ 1

2
,k

)
.(41)

6. Stability Analysis of the Maxwell WSS-FDTD Schemes

In this section, we will prove the stability of the fully discrete Maxwell WSS-FDTD

schemes by using the energy technique. An important property required in proving stabil-
ity of our discrete schemes is the summation by parts (SBP) property, which is a discrete
analogue of integration by parts (IBP). Here, we present a modified and expanded form
of Lemma 9 of ([6]), which describes the SBP property.

Lemma 3. Let the scalar grid functions U, V,W (representing x, y, z components, re-
spectively, of electric fields) and Q,R, S (representing x, y, z components, respectively, of
magnetic fields) be defined on their respective staggered grids, and suppose that U, V and
W satisfy the boundary conditions

Ui+ 1
2
,0,k = Ui+ 1

2
,J,k = Ui+ 1

2
,j,0 = Ui+ 1

2
,j,K = 0,

V0,j+ 1
2
,k = VI,j+ 1

2
,k = Vi,j+ 1

2
,0 = Vi,j+ 1

2
,K = 0,

W0,j,k+ 1
2
= WI,j,k+ 1

2
= Wi,0,k+ 1

2
= Wi,J,k+ 1

2
= 0,

for any integers 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1, and 0 ≤ k ≤ K − 1. Then, we have the
SBP properties

J−1∑

j=0

Si+ 1
2
,j+ 1

2
,k(δyU)i+ 1

2
,j+ 1

2
,k = −

J−1∑

j=1

Ui+ 1
2
,j,k(δyS)i+ 1

2
,j,k,(42a)

K−1∑

k=0

Ri+ 1
2
,j,k+ 1

2
(δzU)i+ 1

2
,j,k+ 1

2
= −

K−1∑

k=1

Ui+ 1
2
,j,k(δzR)i+ 1

2
,j,k,(42b)

I−1∑

i=0

Si+ 1
2
,j+ 1

2
,k(δxV )i+ 1

2
,j+ 1

2
,k = −

I−1∑

i=1

Vi,j+ 1
2
,k(δxS)i,j+ 1

2
,k,(43a)

K−1∑

k=0

Qi,j+ 1
2
,k+ 1

2
(δzV )i,j+ 1

2
,k+ 1

2
= −

K−1∑

k=1

Vi,j+ 1
2
,k(δzQ)i,j+ 1

2
,k,(43b)
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I−1∑

i=0

Ri+ 1
2
,j,k+ 1

2
(δxW )i+ 1

2
,j,k+ 1

2
= −

I−1∑

i=1

Wi,j,k+ 1
2
(δxR)i,j,k+ 1

2
,(44a)

J−1∑

j=0

Qi,j+ 1
2
,k+ 1

2
(δyW )i,j+ 1

2
,k+ 1

2
= −

J−1∑

j=1

Wi,j,k+ 1
2
(δyQ)i,j,k+ 1

2
,(44b)

Proof. Using the boundary conditions on U , we have

J−1∑

j=0

Si+ 1
2
,j+ 1

2
,k(δyU)i+ 1

2
,j+ 1

2
,k =

1

△y

J−1∑

j=0

Si+ 1
2
,j+ 1

2
,k

(
Ui+ 1

2
,j+1,k − Ui+ 1

2
,j,k

)

=
1

△y

( J−2∑

j=0

Si+ 1
2
,j+ 1

2
,kUi+ 1

2
,j+1,k −

J−1∑

j=1

Si+ 1
2
,j+ 1

2
,kUi+ 1

2
,j,k

)

= − 1

△y

J−1∑

j=1

Ui+ 1
2
,j,k

(
Si+ 1

2
,j+ 1

2
,k − Si+ 1

2
,j− 1

2
,k

)

= −
J−1∑

j=1

Ui+ 1
2
,j,k(δyS)i+ 1

2
,j,k.

This proves the SBP property (42a). Similar analysis can be applied to prove properties
(42b), (43), and (44) . �

Theorem 2. (Discrete Energy Conservation and decay) For the integers n ≥ 0,
let En

θ ,H
n
θ be the solution of the Maxwell WSS-FDTD schemes given in Algorithm 3 or

equivalently the solution of the system of equations (30)-(41). Then for the case θ ∈ {0, 1},
the solution of the Maxwell WSS-FDTD schemes satisfy the discrete energy conservation
property

(45) En+1
θ = En

θ ,

while for θ ∈ (0, 1), the solution of the Maxwell WSS-FDTD scheme satisfies the energy
decay

(46) En+1
θ < En

θ ,

where, for any θ ∈ [0, 1] we define the discrete energy En
θ of the corresponding Maxwell

WSS-FDTD scheme as

En
θ :=

(
‖En

θ ‖2 + ‖Hn
θ ‖2
) 1

2 .

Proof. For the case θ = 0 and 1, the Maxwell WSS, and Maxwell WSS-FDTD schemes reduce
to the sequential splitting method, and its fully discrete version, respectively. So the proof
of discrete energy conservation follows from Theorem 2 in [7]. We will analyze the stability
of the Maxwell WSS-FDTD schemes for each θ ∈ (0, 1).

We define ∆ = ∆t∆x∆y∆z. Multiplying both sides of the two equations in system
(30) by

∆

(
E(1)

x
i+1

2
,j,k

+ En
θ,x

i+1
2
,j,k

)
, and ∆

(
H(1)

z
i+1

2
,j+1

2
,k

+Hn
θ,z

i+1
2
,j+1

2
,k

)
,



761

respectively, and then summing over all Ex and Hz degrees of freedom on their respective
grid in the two equations in (30), we will get

‖E(1)
x ‖2 + ‖H(1)

z ‖2 − ‖En
θ,x‖2 − ‖Hn

θ,z‖2

=
∆

2

∑

i,j,k

δyH
(1)
z
i+1

2
,j,k

E(1)
x
i+1

2
,j,k

+
∆

2

∑

i,j,k

δyH
n
θ,z

i+1
2
,j,k

E(1)
x
i+1

2
,j,k

+
∆

2

∑

i,j,k

δyH
(1)
z
i+1

2
,j,k

En
θ,x

i+1
2
,j,k

+
∆

2

∑

i,j,k

δyH
n
θ,z

i+1
2
,j,k

En
θ,x

i+1
2
,j,k

+
∆

2

∑

i,j,k

δyE
(1)
x
i+1

2
,j+1

2
,k
H(1)

z
i+1

2
,j+1

2
,k

+
∆

2

∑

i,j,k

δyE
n
θ,x

i+1
2
,j+1

2
,k
H(1)

z
i+1

2
,j+1

2
,k

+
∆

2

∑

i,j,k

δyE
(1)
x
i+1

2
,j+1

2
,k
Hn

θ,z
i+1

2
,j+1

2
,k

+
∆

2

∑

i,j,k

δyE
n
θ,x

i+1
2
,j+1

2
,k
Hn

θ,z
i+1

2
,j+1

2
,k
.

Rearranging terms by using Lemma 3 and the fact that En
θ and E(1) satisfy the PEC

boundary condition (23), the right hand side in the above equation will be zero and we
get

‖E(1)
x ‖2 + ‖H(1)

z ‖2 = ‖En
θ,x‖2 + ‖Hn

θ,z‖2.(47)

By a similar process system applied to systems (31)-(40), we get the following identities

‖Ĥ(1)
x ‖2 + ‖Ê(1)

z ‖2 = ‖Hn
θ,x‖2 + ‖En

θ,z‖2,(48)

‖E(1)
y ‖2 + ‖H(1)

x ‖2 = ‖En
θ,y‖2 + ‖Hn

θ,x‖2,(49)

‖Ĥ(1)
y ‖2 + ‖Ê(1)

x ‖2 = ‖Hn
θ,y‖2 + ‖En

θ,x‖2,(50)

‖E(1)
z ‖2 + ‖H(1)

y ‖2 = ‖En
θ,z‖2 + ‖Hn

θ,y‖2,(51)

‖Ĥ(1)
z ‖2 + ‖Ê(1)

y ‖2 = ‖Hn
θ,z‖2 + ‖En

θ,y‖2,(52)

‖E(2)
x ‖2 + ‖H(2)

y ‖2 = ‖E(1)
x ‖2 + ‖H(1)

y ‖2,(53)

‖Ĥ(2)
x ‖2 + ‖Ê(2)

y ‖2 = ‖Ĥ(1)
x ‖2 + ‖Ê(1)

y ‖2,(54)

‖E(2)
y ‖2 + ‖H(2)

z ‖2 = ‖E(1)
y ‖2 + ‖H(1)

z ‖2,(55)

‖Ĥ(2)
y ‖2 + ‖Ê(2)

z ‖2 = ‖Ĥ(1)
y ‖2 + ‖Ê(1)

z ‖2,(56)

‖E(2)
z ‖2 + ‖H(2)

x ‖2 = ‖E(1)
z ‖2 + ‖H(1)

x ‖2,(57)

‖Ĥ(2)
z ‖2 + ‖Ê(2)

x ‖2 = ‖Ĥ(1)
z ‖2 + ‖Ê(1)

x ‖2.(58)

Adding equations (47), (49) and (51), we get

‖E(1)‖2 + ‖H(1)‖2 = ‖En
θ ‖2 + ‖Hn

θ ‖2.(59)

Similarly, adding equations (48), (50) and (52), we get

‖Ĥ(1)‖2 + ‖Ê(1)‖2 = ‖En
θ ‖2 + ‖Hn

θ ‖2.(60)

Adding equations (53), (55) and (57), we obtain

‖E(2)‖2 + ‖H(2)‖2 = ‖E(1)‖2 + ‖H(1)‖2,(61)

and finally adding equations (54), (56) and (58), we get

‖Ĥ(2)‖2 + ‖Ê(2)‖2 = ‖Ĥ(1)‖2 + ‖Ê(1)‖2.

Since

En+1
θ = θE(2) + (1− θ)Ê(2) and Hn+1

θ = θH(2) + (1− θ)Ĥ(2),
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we have
(
En+1
θ

)2
= ‖En+1

θ ‖2 + ‖Hn+1
θ ‖2

= θ2
(
‖E(2)‖2 + ‖H(2)‖2

)
+ (1− θ)2

(
‖Ê(2)‖2 + ‖Ĥ(2)‖2

)

+ 2θ(1− θ)
[ 〈

E(2), Ê(2)
〉
+
〈
H(2), Ĥ(2)

〉 ]

=
(
θ2 + (1− θ)2

) (
‖En

θ ‖2 + ‖Hn
θ ‖2
)
+ 2θ(1− θ)

[〈
E(2), Ê(2)

〉
+
〈
H(2), Ĥ(2)

〉]
.(62)

From (62) we can see that for the case θ = 0 or θ = 1, the Maxwell WSS-FDTD scheme
satisfies the energy conservation. By using Cauchy-Schwartz inequality and AM-GM in-
equality, we get that

〈
E(2), Ê(2)

〉
+
〈
H(2), Ĥ(2)

〉
≤ ‖E(2)‖‖Ê(2)‖+ ‖H(2)‖‖Ĥ(2)‖

≤ 1

2

(
‖E(2)‖2 + ‖Ê(2)‖2 + ‖H(2)‖2 + ‖Ĥ(2)‖2

)

= ‖En
θ ‖2 + ‖Hn

θ ‖2.(63)

So from the equation (62), the energy of Maxwell WSS scheme decays:
(
En+1
θ

)2
= ‖En+1

θ ‖2 + ‖Hn+1
θ ‖2 ≤

(
θ2 + (1− θ)2 + 2θ(1− θ)

) (
‖En

θ ‖2 + ‖Hn
θ ‖2
)

= ‖En
θ ‖2 + ‖Hn

θ ‖2 = (En
θ )

2 .

�

Since the energy conservation or decay is unconditional on the time step ∆t or the
mesh step sizes ∆x,∆y or ∆z, we have the following corollary:

Corollary 1. The weighted sequential splitting methods, Maxwell WSS-FDTD, for the three
dimensional Maxwell’s equations with weight parameters θ ∈ [0, 1], and PEC boundary
conditions (5) are unconditionally stable.

6.1. Analysis of Discrete Energy Decay in the Maxwell WSS-FDTD Methods. In
this section, we further analyze the energy decay of the Maxwell WSS-FDTD schemes for
θ ∈ (0, 1). We obtain a lower bound on the energy ratio at time n + 1 and n. We also
compute an energy decay rate that we prove to be third order in ∆t.

For a lower bound on the energy ratio, we rewrite equation (62) as

‖En+1
θ ‖2 + ‖Hn+1

θ ‖2

= ‖En
θ ‖2 + ‖Hn

θ ‖2 + 2θ(1− θ)
[〈

E(2), Ê(2)
〉
+
〈
H(2), Ĥ(2)

〉
− (‖En

θ ‖2 + ‖Hn
θ ‖2)

]
.

Dividing both sides by ‖En+1
θ ‖2 + ‖Hn+1

θ ‖2 we have

‖En
θ ‖2 + ‖Hn

θ ‖2
‖En+1

θ ‖2 + ‖Hn+1
θ ‖2

=
1

1− 2θ(1− θ)

[
1− 2θ(1− θ)

〈
E(2), Ê(2)

〉
+
〈
H(2), Ĥ(2)

〉

‖En+1
θ ‖2 + ‖Hn+1

θ ‖2
]
.

Using the fact that energy decays and (63), we get the inequality

‖En
θ ‖2 + ‖Hn

θ ‖2
‖En+1

θ ‖2 + ‖Hn+1
θ ‖2

≤ 1

1− 2θ(1− θ)

[
1− 2θ(1− θ)

〈
E(2), Ê(2)

〉
+
〈
H(2), Ĥ(2)

〉

‖En
θ ‖2 + ‖Hn

θ ‖2
]

≤ 1 + 2θ(1− θ)

1− 2θ(1− θ)
.

Thus, the energy ratio satisfies the lower bound

‖En+1
θ ‖2 + ‖Hn+1

θ ‖2
‖En

θ ‖2 + ‖Hn
θ ‖2

≥ 1− 2θ(1− θ)

1 + 2θ(1− θ)
,
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and we obtain

1− 2θ(1− θ)

1 + 2θ(1− θ)
≤ ‖En+1

θ ‖2 + ‖Hn+1
θ ‖2

‖En
θ ‖2 + ‖Hn

θ ‖2
=
(En+1

θ

En
θ

)2
≤ 1,(64)

for θ ∈ (0, 1) and n = 1, 2, ..., N . We note that the minimum value of the lower bound on
the left hand side in the inequality above is at θ = 0.5. Thus, we expect that the Maxwell
SWSS-FDTD scheme is the most dissipative scheme in the family of Maxwell WSS-FDTD

schemes. However, as we will see below, this dissipation is of higher order in time than
the convergence rate of the schemes.

6.1.1. Computation of the Energy Decay Rate. In this section, we will show that

the discrete energy decay rate at time tn+ 1
2 , defined as

(65) δtEn+ 1
2

θ :=
En+1
θ − En

θ

∆t
,

is third order in the time step ∆t. For convenience, we introduce the temporary variables

Wα =

(
E(α)

H(α)

)
, Ŵ

α
=

(
Ê(α)

Ĥ(α)

)
, and Wβ

θ =

(
Eβ

θ

Hβ
θ

)
,

where α ∈ {1, 2} and β ∈ {n, n+ 1}. From (62), we have

(
En+1
θ

)2
=
(
En
θ

)2
+ 2θ(1− θ)

[〈
W2,Ŵ

2
〉
−
(
En
θ

)2]
.(66)

Defining the average Ē n+1/2
θ :=

1

2
(En+1

θ + En
θ ), equation (66) becomes

En+1
θ = En

θ +
θ(1− θ)

Ē n+1/2
θ

(〈
W2,Ŵ

2
〉
−
(
En
θ

)2)
.(67)

From the first equation of Stage 1 (28a) of the Maxwell WSS-FDTD method we have

W1 = Wn
θ +

△t

2
A+

h (W
1 +Wn

θ ).

Recursively substituting W1 on the right side several times, we get that

W1 = Wn
θ +△tA+

hW
n
θ +

△t2

2
(A+

h )
2Wn

θ + ...+
△tk

2k−1
(A+

h )
kWn

θ

+
(△t

2

)k+1

(A+
h )

k+1(Wn
θ +W1).

Similarly, from the other equations in Stage 1 and Stage 2 (29a) of the Maxwell WSS-FDTD

method we obtain the identities

Ŵ
1
= Wn

θ +△tA−
h W

n
θ +

△t2

2
(A−

h )
2Wn

θ + ...+
△tk

2k−1
(A−

h )
kWn

θ

+
(△t

2

)k+1

(A−
h )

k+1(Wn
θ + Ŵ

1
),

W2 = W1 +△tA−
h W

1 +
△t2

2
(A−

h )
2W1 + ...+

△tk

2k−1
(A−

h )
kW1

+
(△t

2

)k+1

(A−
h )

k+1(W1 +W2),

Ŵ
2
= Ŵ

1
+△tA+

h Ŵ
1
+

△t2

2
(A+

h )
2Ŵ

1
+ ...+

△tk

2k−1
(A+

h )
kŴ

1

+
(△t

2

)k+1

(A+
h )

k+1(Ŵ
1
+ Ŵ

2
),
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Thus, both W2 and Ŵ
2
can be written in terms of Wn

θ as

W2 = Wn
θ +△tAhW

n
θ +

△t2

2

(
(A+

h )
2 + 2A−

h A
+
h + (A−

h )
2
)
Wn

θ

+
△t3

22

(
(A+

h )
3 + 2A−

h (A
+
h )

2 + 2(A−
h )

2A+
h + (A−

h )
3
)
Wn

θ

+
△t4

23

(
(A+

h )
4 + 2A−

h (A
+
h )

3 + 2(A−
h )

2(A+
h )

2 + 2(A−
h )

3A+
h + (A−

h )
4
)
Wn

θ +O(△t5)

Ŵ
2
= Wn

θ +△tAhW
n
θ +

△t2

2

(
(A+

h )
2 + 2A+

hA
−
h + (A−

h )
2
)
Wn

θ

+
△t3

22

(
(A+

h )
3 + 2A+

h (A
−
h )

2 + 2(A+
h )

2A−
h + (A−

h )
3
)
Wn

θ

+
△t4

23

(
(A+

h )
4 + 2A+

h (A
−
h )

3 + 2(A+
h )

2(A−
h )

2 + 2(A+
h )

3A−
h + (A−

h )
4
)
Wn

θ +O(△t5)

Hence the inner product
〈
W2,Ŵ

2
〉
can be computed as

〈
W2,Ŵ

2
〉
= 〈Wn

θ ,W
n
θ 〉+ 2△t 〈Wn

θ ,AhW
n
θ 〉

(68)

+△t2
(
〈AhW

n
θ ,AhW

n
θ 〉+

〈
A2

hW
n
θ ,W

n
θ

〉 )

+
△t3

2

[ 〈(
A3

h −A+
hA

−
h A

+
h −A−

h A
+
hA

−
h

)
Wn

θ ,W
n
θ

〉
+ 2

〈
A2

hW
n
θ ,AhW

n
θ

〉 ]

+
△t4

22

[ 〈(
A2

h + [A+
h ,A

−
h ]
)
Wn

θ ,
(
A2

h − [A+
h ,A

−
h ]
)
Wn

θ

〉

+
〈(

A4
h −A−

h (A
+
h )

2A−
h − (A−

h )
2A+

hA
−
h − (A+

h )
2A−

h A
+
h −A+

h (A
−
h )

2A+
h

)
Wn

θ ,W
n
θ

〉

+ 2
〈(

A3
h −A+

hA
−
h A

+
h −A−

h A
+
hA

−
h

)
Wn

θ ,AhW
n
θ

〉 ]
+O(△t5).

Finally, substituting (68) into equation (67) we get

En+1
θ = En

θ + 2
θ(1− θ)△t

Ē n+1/2
θ

〈Wn
θ ,AhW

n
θ 〉

(69)

+
θ(1− θ)△t2

Ē n+1/2
θ

(
〈AhW

n
θ ,AhW

n
θ 〉+

〈
A2

hW
n
θ ,W

n
θ

〉 )

+
θ(1− θ)△t3

2 Ē n+1/2
θ

[ 〈(
A3

h −A+
hA

−
h A

+
h −A−

h A
+
hA

−
h

)
Wn

θ ,W
n
θ

〉
+ 2

〈
A2

hW
n
θ ,AhW

n
θ

〉 ]

+
θ(1− θ)△t4

22 Ē n+1/2
θ

[ 〈(
A2

h + [A+
h ,A

−
h ]
)
Wn

θ ,
(
A2

h − [A+
h ,A

−
h ]
)
Wn

θ

〉

+
〈(

A4
h −A−

h (A
+
h )

2A−
h − (A−

h )
2A+

hA
−
h − (A+

h )
2A−

h A
+
h −A+

h (A
−
h )

2A+
h

)
Wn

θ ,W
n
θ

〉

+ 2
〈(

A3
h −A+

hA
−
h A

+
h −A−

h A
+
hA

−
h

)
Wn

θ ,AhW
n
θ

〉 ]
+O(△t5).

We now show that the coefficients of ∆t, ∆t2, ∆t3 in the energy identity (69) are all
zero.

Proposition 1. For k ∈ N, let Hk be a discrete magnetic field at time tk, and Ek be a
discrete electric field at time tk, satisfying the PEC boundary conditions (5). Then the
following identity holds:

〈
Ek, curlhH

k
〉
=
〈
Hk, curlhE

k
〉
.
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Proof. This proposition essentially says that the discrete curl operator, curlh, is self-
adjoint. This self-adjointness of the curlh operator follows from the SBP property given
in Lemma 3. �

Lemma 4. For k ∈ N, and discrete vector functions Wk := (Ek,Hk)T at time tk, and
Wm := (Em,Hm)T at time tm, where Ek and Em satisfy PEC boundary conditions (5),
we have 〈

AhW
k,Wm

〉
+
〈
Wk,AhW

m
〉
= 0.

Proof. Apply Proposition 1. �

Theorem 3. For all n ∈ N, and Wn
θ = (En

θ ,H
n
θ )

T , solution to the Maxwell WSS-FDTD

method for θ ∈ [0, 1], the following identities hold

〈Wn
θ ,AhW

n
θ 〉 = 0,(70)

〈AhW
n
θ ,AhW

n
θ 〉+

〈
A2

hW
n
θ ,W

n
θ

〉
= 0,(71)

〈
A2

hW
n
θ ,AhW

n
θ

〉
= 0,(72)

〈(
A3

h −A+
hA

−
h A

+
h −A−

h A
+
hA

−
h

)
Wn

θ ,W
n
θ

〉
+
〈
A2

hW
n
θ ,AhW

n
θ

〉
= 0.(73)

Proof. From Algorithm 3 we have
〈
Wn+1

θ ,AhW
n+1
θ

〉
=
〈
En+1

θ , curlhH
n+1
θ

〉
−
〈
Hn+1

θ , curlhE
n+1
θ

〉

= θ2
[ 〈

E(2), curlhH
(2)
〉
−
〈
H(2), curlhE

(2)
〉 ]

+ θ(1− θ)
[ 〈

Ê(2), curlhH
(2)
〉
−
〈
H(2), curlhÊ

(2)
〉 ]

+ θ(1− θ)
[ 〈

E(2), curlhĤ
(2)
〉
−
〈
Ĥ(2), curlhE

(2)
〉 ]

+

(1− θ)2
[ 〈

Ê(2), curlhĤ
(2)
〉
−
〈
Ĥ(2), curlhÊ

(2)
〉 ]

.

Applying Proposition 1, we get that
〈
Wn+1

θ ,AhW
n+1
θ

〉
= 0.

Next, we have
〈
A2

hW
n
θ ,W

n
θ

〉
= −〈curlh(curlhEn

θ ),E
n
θ 〉 − 〈curlh(curlhHn

θ ),H
n
θ 〉

= −〈curlhEn
θ , curlhE

n
θ 〉 − 〈curlhHn

θ , curlhH
n
θ 〉

= −〈AhW
n
θ ,AhW

n
θ 〉 ,

and the second identity holds.
Next, applying Lemma 4, we have

〈
A2

hW
n
θ ,AhW

n
θ

〉
= 〈Ah(AhW

n
θ ),AhW

n
θ 〉 = −〈AhW

n
θ ,Ah(AhW

n
θ )〉

= −
〈
AhW

n
θ ,A

2
hW

n
θ

〉
.

Thus,
〈
A2

hW
n
θ ,AhW

n
θ

〉
= 0, and the third identity is proved.

Finally, based on the fact that the discrete differential operators δx, δy and δz commute,
we can show that A+

hA
−
h A

+
h +A−

h A
+
hA

−
h = 0. Then, applying Lemma 4, we get

〈
A3

hW
n
θ ,W

n
θ

〉
=
〈
Ah(A

2
hW

n
θ ),W

n
θ

〉
= −

〈
A2

hW
n
θ ,AhW

n
θ

〉

Thus
〈
A3

hW
n
θ ,W

n
θ

〉
+
〈
A2

hW
n
θ ,AhW

n
θ

〉
= 0. �
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Applying Theorem 3, we get that the coefficients of △t,△t2 and △t3 in the energy
equation (69) are all zero. Thus, from (69) we have

δtEn+ 1
2

θ =
En+1
θ − En

θ

∆t

=
θ(1− θ)

22 Ē n+1/2
θ

△t3
[
〈BhW

n
θ ,W

n
θ 〉+ 2

〈
A3

hW
n
θ ,AhW

n
θ

〉
(74)

+
〈(

A2
h + [A+

h ,A
−
h ]
)
Wn

θ ,
(
A2

h − [A+
h ,A

−
h ]
)
Wn

θ

〉 ]
+O(△t4).

where

Bh :=
(
A4

h −A−
h (A

+
h )

2A−
h − (A−

h )
2A+

hA
−
h − (A+

h )
2A−

h A
+
h −A+

h (A
−
h )

2A+
h

)
.(75)

The coefficient of △t3 in the energy decay rate is not zero. Thus, the energy decay rate is
of third order in △t for all values of θ ∈ (0, 1).

7. Convergence Analysis of the Maxwell WSS-FDTD Methods

In this section we prove the convergence of the fully discrete Maxwell WSS-FDTD scheme
for the case θ ∈ (0, 1). The proof of convergence for the case of θ ∈ {0, 1}, for which the
Maxwell WSS-FDTD scheme reduces to the standard sequential splitting, has been carried
out in [7]. The proof of convergence is based on the stability analysis in Section 6, and
the analysis of truncation errors. In order to prove convergence we need to define new
intermediate variables. We define the intermediate variables

(
Ẽ(1)

H̃(1)

)
(tn) :=

[
I +∆tA+

h +
(∆t)2

2
(A+

h )
2
](E(tn)

H(tn)

)
= e∆tA+

h

(
E(tn)

H(tn)

)
+O(△t3),

(76)

( ˜̂
E

(1)

˜̂
H

(1)

)
(tn) :=

[
I +∆tA−

h +
(∆t)2

2
(A−

h )
2
](E(tn)

H(tn)

)
= e∆tA−

h

(
E(tn)

H(tn)

)
+O(△t3),

(77)

( ˜̂
E

(2)

˜̂
H

(2)

)
(tn) :=

[
I +∆tAh +

(∆t)2

2

(
(A+

h )
2 + 2A+

hA
−
h + (A−

h )
2) ]
(
E(tn)

H(tn)

)

= e∆tA+

h e∆tA−
h

(
E(tn)

H(tn)

)
+O(△t3).(78)

We also define one more intermediate variable as

(
Ẽ(2)

H̃(2)

)
(tn) =

1

θ

(
E(tn+1)

H(tn+1)

)
− 1− θ

θ

( ˜̂
E

(2)

˜̂
H

(2)

)
(tn)

=
1

θ

(
E(tn+1)

H(tn+1)

)
− 1− θ

θ

[
I +∆tAh +

(∆t)2

2

(
(A+

h )
2 + 2A+

hA
−
h + (A−

h )
2)
](

E(tn)

H(tn)

)
.

(79)
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Substituting the intermediate variables (76)-(79) and exact solutionsE,H into the Maxwell

WSS-FDTD scheme (28a)-(29a), and denoting ~ξ, ~̂ξ, ~η, ~̂η to be the corresponding error func-
tions we have

1

∆t

[(
Ẽ(1)

H̃(1)

)
−
(
E(tn)

H(tn)

)]
=

1

2
A+

h

[(
Ẽ(1)

H̃(1)

)
+

(
E(tn)

H(tn)

)]
+ ~ξ,(80)

1

∆t

[( ˜̂
E

(1)

˜̂
H

(1)

)
−
(
E(tn)

H(tn)

)]
=

1

2
A−

h

[( ˜̂
E

(1)

˜̂
H

(1)

)
+

(
E(tn)

H(tn)

)]
+ ~̂ξ,(81)

1

∆t

[(
Ẽ(2)

H̃(2)

)
−
(
Ẽ(1)

H̃(1)

)]
=

1

2
A−

h

[(
Ẽ(2)

H̃(2)

)
+

(
Ẽ(1)

H̃(1)

)]
+ ~η,(82)

1

∆t

[( ˜̂
E

(2)

˜̂
H

(2)

)
−
( ˜̂
E

(1)

˜̂
H

(1)

)]
=

1

2
A+

h

[( ˜̂
E

(2)

˜̂
H

(2)

)
+

( ˜̂
E

(1)

˜̂
H

(1)

)]
+ ~̂η,(83)

where the vector ~ξ = (ξ1, ξ2, ..., ξ6)
T and ~̂ξ = (ξ̂1, ξ̂2, ..., ξ̂6)

T . We similarly define ~η and ~̂η.
Based on equations (80)-(83) we have the following proposition.

Proposition 2 (Truncation Errors). Suppose that the exact solutions E,H satisfy

E ∈ C3
(
[0, T ] :

[
C3(Ω)

]3)
, and H ∈ C3

(
[0, T ] :

[
C3(Ω)

]3)
.

Let θ ∈ (0, 1). Then the error functions ~ξ, ~̂ξ, ~η and ~̂η are bounded, i.e. there exists a
constant Cθ > 0 independent of ∆t,∆x,∆y and ∆z (but dependent on θ) such that for
the case θ 6= 0.5

max
0≤n≤N

{
‖~ξ‖∞, ‖~̂ξ‖∞, ‖~η‖∞, ‖~̂η‖∞

}
≤ Cθ

(
∆t+∆x2 +∆y2 +∆z2

)
,

and for the case θ = 0.5, there exists a constant C > 0 independent of ∆t,∆x,∆y and ∆z
such that

max
0≤n≤N

{
‖~ξ‖∞, ‖~̂ξ‖∞, ‖~η‖∞, ‖~̂η‖∞

}
≤ C

(
∆t2 +∆x2 +∆y2 +∆z2

)
.

Proof. Substituting definition (76) into equation (80), we get

1

∆t

(
∆tA+

h +
(∆t)2

2
(A+

h )
2
)(E(tn)

H(tn)

)
=

1

2
A+

h

(
2I +∆tA+

h +
(∆t)2

2
(A+

h )
2
)(E(tn)

H(tn)

)
+ ~ξ,

which simplifies to

(
A+

h +
(∆t)

2
(A+

h )
2
)(E(tn)

H(tn)

)
= A+

h

[(
I +

∆t

2
A+

h +
(∆t)2

4
(A+

h )
2
)(E(tn)

H(tn)

)]
+ ~ξ.

From the above we get

~ξ = − (∆t)2

4
(A+

h )
3

(
E(tn)

H(tn)

)
.

Using the smoothness assumptions on the exact solutions and Taylor expansions around
the point tn, we get

‖~ξ‖∞ ≤ C
(
∆t2 +∆x2 +∆y2 +∆z2

)
.(84)

Similarly, by substituting (77) into (81) we can show that ~̂ξ = − (∆t)2

4
(A−

h )
3

(
E(tn)

H(tn)

)

and

‖~̂ξ‖∞ ≤ C
(
∆t2 +∆x2 +∆y2 +∆z2

)
.(85)
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Next, substituting the definitions (76) and (78) into equation (82) and rearranging
terms, we get

~η =
1

∆t

[
1

θ

(
E(tn+1)

H(tn+1)

)
− 1− θ

θ

(
E(tn)

H(tn)

)
−
(
E(tn)

H(tn)

)]
+

[
−1− θ

θ
Ah

(
E(tn)

H(tn)

)(86)

−A+
h

(
E(tn)

H(tn)

)
− 1

2θ
A−

h

(
E(tn+1)

H(tn+1)

)
+

1− θ

2θ
A−

h

(
E(tn)

H(tn)

)
− 1

2
A−

h

(
E(tn)

H(tn)

)]

+
∆t

2

[
−1− θ

θ

(
(A+

h )
2 + 2A+

hA
−
h + (A−

h )
2)
(
E(tn)

H(tn)

)
− (A+

h )
2

(
E(tn)

H(tn)

)

+
1− θ

θ
A−

h Ah

(
E(tn)

H(tn)

)
−A−

h A
+
h

(
E(tn)

H(tn)

)]
+O(∆t2).

Simplifying, the first term on the right hand side of (86) can be rewritten as

1

∆t

[
1

θ

(
E(tn+1)

H(tn+1)

)
− 1− θ

θ

(
E(tn)

H(tn)

)
−
(
E(tn)

H(tn)

)]
=

1

θ

1

∆t

[(
E(tn+1)

H(tn+1)

)
−
(
E(tn)

H(tn)

)]

=
1

θ
δt

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
.(87)

The second term on the right hand side of (86) can be rewritten as

−1− θ

θ
Ah

(
E(tn)

H(tn)

)
−A+

h

(
E(tn)

H(tn)

)
− 1

2θ
A−

h

(
E(tn+1)

H(tn+1)

)
+

1− θ

2θ
A−

h

(
E(tn)

H(tn)

)
(88)

−1

2
A−

h

(
E(tn)

H(tn)

)
= −1

θ
Ah

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
+

∆t

2θ
A+

h δt

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
,

where, the average values of the electric and magnetic fields at tn+ 1
2 are defined as

E(tn+ 1
2 ) :=

1

2

(
E(tn+1) +E(tn)

)
and H(tn+ 1

2 ) :=
1

2

(
H(tn+1) +H(tn)

)
.

Finally, the third term on the right of (86) can be written as

∆t

2

[
− 1− θ

θ

(
(A+

h )
2 + 2A+

hA
−
h + (A−

h )
2 −A−

h Ah

)
−
(
(A+

h )
2 +A−

h A
+
h

)
](

E(tn)

H(tn)

)(89)

=
∆t

2

[
−1

θ
(A+

h )
2 − 2

1− θ

θ
A+

hA
−
h +

1− 2θ

θ
A−

h A
+
h

](
E(tn)

H(tn)

)
.

Thus, substituting equations (87), (88) and (89) into equation (86), we get

~η =
1

θ
δt

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
− 1

θ
Ah

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
+

∆t

2θ
A+

h δt

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
(90)

+
∆t

2

[
−1

θ
(A+

h )
2 − 2

1− θ

θ
A+

hA
−
h +

1− 2θ

θ
A−

h A
+
h

](
E(tn)

H(tn)

)
+O(∆t2).

We can show that the first two terms on the right of (90) are bounded by 1
θ
O(∆t2+∆x2+

∆y2 +∆z2), since

(91) δt

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
−Ah

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
= O(∆t2 +∆x2 +∆y2 +∆z2).



769

So equation (90) becomes

~η =
∆t

2θ
A+

h δt

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
+

∆t

2

[
−1

θ
(A+

h )
2 − 2

1− θ

θ
A+

hA
−
h +

1− 2θ

θ
A−

h A
+
h

](
E(tn)

H(tn)

)

+
1

θ
O(∆t2 +∆x2 +∆y2 +∆z2)

=
∆t

2θ

[
A+

hAh

(
E(tn+ 1

2 )

H(tn+ 1
2 )

)
−A+

h

(
Ah + (1− 2θ)A−

h

)
(
E(tn)

H(tn)

)](92)

+
∆t

2θ
(1− 2θ)A−

h A
+
h

(
E(tn)

H(tn)

)
+

1

θ
O(∆t2 +∆x2 +∆y2 +∆z2).

Thus,

~η =
∆t

2θ

[
A+

hAh

(
E(tn+ 1

2 )−E(tn)

H(tn+ 1
2 )−H(tn)

)]
− ∆t

2θ
(1− 2θ)A+

hA
−
h

(
E(tn)

H(tn)

)

+
∆t

2θ
(1− 2θ)A−

h A
+
h

(
E(tn)

H(tn)

)
+

1

θ
O(∆t2 +∆x2 +∆y2 +∆z2)

=
∆t

4θ

[
A+

hAh

(
E(tn+1)−E(tn)

H(tn+1)−H(tn)

)]
+

∆t

2θ
(1− 2θ)

[
A−

h A
+
h −A+

hA
−
h

]
(
E(tn)

H(tn)

)
(93)

+
1

θ
O(∆t2 +∆x2 +∆y2 +∆z2).

Next, we can show that the first term on the right of (93) is bounded by 1
θ
O(∆t2 +

∆x2 + ∆y2 + ∆z2) by using appropriate Taylor expansions. Moreover by the regularity
assumptions on the exact solutions E and H, we can bound ~η as

‖~η‖∞ ≤ C1

θ

(
∆t2 +∆x2 +∆y2 +∆z2

)
+ C2

(1− 2θ

2θ

) (
∆t+∆x2 +∆y2 +∆z2

)
.(94)

Lastly we will find a bound for ~̂η. From the definition of the error function (83) and the
intermediate variable (78), we get

~̂η =
1

∆t

( ˜̂
E

(2)

˜̂
H

(2)

)
− 1

∆t

( ˜̂
E

(1)

˜̂
H

(1)

)
− 1

2
A+

h

( ˜̂
E

(2)

˜̂
H

(2)

)
− 1

2
A+

h

( ˜̂
E

(1)

˜̂
H

(1)

)

=

[
Ah −A−

h − 1

2
A+

h − 1

2
A+

h

](
E(tn)

H(tn)

)
+O(∆t2 +∆x2 +∆y2 +∆z2)

+
∆t

2

[(
(A+

h )
2 + 2A+

hA
−
h + (A−

h )
2)− (A−

h )
2 −A+

hAh −A+
hA

−
h

]
(
E(tn)

H(tn)

)
.

In the identity above for ~̂η, the first and third term on the right hand side are identically
zero. Thus, we have that

‖~̂η‖∞ ≤ C1

(
∆t2 +∆x2 +∆y2 +∆z2

)
.(95)

Combining the bounds (84), (85), (94) and (95) for the case θ 6= 0.5, we get

max
0≤n≤N

{
‖~ξ‖∞, ‖~̂ξ‖∞, ‖~η‖∞, ‖~̂η‖∞

}
≤ Cθ

(
∆t+∆x2 +∆y2 +∆z2

)
,

and for the case θ = 0.5 we obtain

max
0≤n≤N

{
‖~ξ‖∞, ‖~̂ξ‖∞, ‖~η‖∞, ‖~̂η‖∞

}
≤ C

(
∆t2 +∆x2 +∆y2 +∆z2

)
.

�
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Theorem 4 (Convergence of Maxwell WSS-FDTD). Suppose that the exact solutions
E,H satisfy

E ∈ C3
(
[0, T ] :

[
C3(Ω)

]3)
, and H ∈ C3

(
[0, T ] :

[
C3(Ω)

]3)
.

Let En
θ and Hn

θ be the solution of the Maxwell WSS-FDTD method. Then for fixed T =
N∆t > 0, there exists a constant Kθ independent of ∆t,∆x,∆y and ∆z, (but depending
on θ) such that

max
0≤n≤N

(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

≤
(
‖E(t0)−E0

θ‖2 + ‖H(t0)−H0
θ‖2
) 1

2 +KθT (∆t+∆x2 +∆y2 +∆z2),

when θ 6= 0.5. Otherwise, for θ = 0.5 we have

max
0≤n≤N

(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

≤
(
‖E(t0)−E0

θ‖2 + ‖H(t0)−H0
θ‖2
) 1

2 +KT (∆t2 +∆x2 +∆y2 +∆z2).

Proof. We define the error functions ~En
θ , and ~Hn

θ as

~En
θ = E(tn)−En

θ ,

~Hn
θ = H(tn)−Hn

θ ,

and for i = 1, 2,

~E(i) = Ẽ(i)(tn)−E(i), ~̂E
(i)

=
̂̃
E

(i)

(tn)− Ê(i),

~H(i) = H̃(i)(tn)−H(i), ~̂H
(i)

=
̂̃
H

(i)

(tn)− Ĥ(i),

where the intermediate variables in the errors above are defined in (76)-(79). From equa-
tion (80) and the first equation of (28a), we get

1

∆t

[(
~E(1)

~H(1)

)
−
(

~En
θ

~Hn
θ

)]
=

1

2
A+

h

[(
~E(1)

~H(1)

)
+

(
~En
θ

~Hn
θ

)]
+ ~ξ.(96)

Similarly we get

1

∆t

[(
~̂E
(1)

~̂H
(1)

)
−
(

~En
θ

~Hn
θ

)]
=

1

2
A−

h

[(
~̂E
(1)

~̂H
(1)

)
+

(
~En
θ

~Hn
θ

)]
+ ~̂ξ(97)

1

∆t

[(
~E(2)

~H(2)

)
−
(

~E(1)

~H(1)

)]
=

1

2
A−

h

[(
~E(2)

~H(2)

)
+

(
~E(1)

~H(1)

)]
+ ~η(98)

1

∆t

[(
~̂E
(2)

~̂H
(2)

)
−
(

~̂E
(1)

~̂H
(1)

)]
=

1

2
A+

h

[(
~̂E
(2)

~̂H
(2)

)
+

(
~̂E
(1)

~̂H
(1)

)]
+ ~̂η.(99)

For convenience, we use the following notation:

• ~ξE = (ξ1, ξ2, ξ3)
T , the first three components of ~ξ, and ~ξH = (ξ4, ξ5, ξ6)

T , the last

three components of ~ξ, i.e. ~ξ = (~ξE , ~ξH)T .

• ~̂ξE = (ξ̂1, ξ̂2, ξ̂3)
T , the first three components of ~̂ξ, and ~̂ξH = (ξ̂4, ξ̂5, ξ̂6)

T , the last

three components of ~̂ξ, i.e. ~̂ξ = (~̂ξE ,
~̂ξH)T .

The scalar form of equation (96) can be written as the system of equations
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1

∆t

[
E(1)
x
i+1

2
,j,k

− En
θ,x

i+1
2
,j,k

]
=

1

2

[
(δyH(1)

z )i+ 1
2
,j,k + (δyHn

θ,z)i+ 1
2
,j,k

]
+ ξ1

i+1
2
,j,k

,

1

∆t

[
H(1)

z
i+1

2
,j+1

2
,k

−Hn
θ,z

i+1
2
,j+1

2
,k

]
=

1

2

[
(δyE(1)

x )i+ 1
2
,j+ 1

2
,k + (δyEn

θ,x)i+ 1
2
,j+ 1

2
,k

]

+ξ6
i+1

2
,j+1

2
,k
,

(100)





1

∆t

[
E(1)
y
i,j+1

2
,k

− En
θ,y

i,j+1
2
,k

]
=

1

2

[
(δzH(1)

x )i,j+ 1
2
,k + (δzHn

θ,x)i,j+ 1
2
,k

]
+ ξ2

i,j+1
2
,k
,

1

∆t

[
H(1)

x
i,j+1

2
,k+1

2

−Hn
θ,x

i,j+1
2
,k+1

2

]
=

1

2

[
(δzE(1)

y )i,j+ 1
2
,k+ 1

2
+ (δzEn

θ,y)i,j+ 1
2
,k+ 1

2

]

+ξ4
i,j+1

2
,k+1

2

,

(101)





1

∆t

[
E(1)
z
i,j,k+1

2

− En
θ,z

i,j,k+1
2

]
=

1

2

[
(δxH

(1)
y )i,j,k+ 1

2
+ (δxH

n
θ,y)i,j,k+ 1

2

]
+ ξ3

i,j,k+1
2

,

1

∆t

[
H(1)

y
i+1

2
,j,k+1

2

−Hn
θ,y

i+1
2
,j,k+1

2

]
=

1

2

[
(δxE(1)

z )i+ 1
2
,j,k+ 1

2
+ (δxEn

θ,z)i+ 1
2
,j,k+ 1

2

]

+ξ5
i+1

2
,j,k+1

2

.

(102)

Using the energy method (similar to the stability analysis), from equation (100), we get

‖E(1)
x ‖2 + ‖H(1)

z ‖2 − ‖En
θ,x‖2 − ‖Hn

θ,z‖2 = ∆
∑

i,j,k

ξ1
i+1

2
,j,k

(
E(1)
x
i+1

2
,j,k

+ En
θ,x

i+1
2
,j,k

)

+∆
∑

i,j,k

ξ4
i+1

2
,j+1

2
,k

(
H(1)

z
i+1

2
,j+1

2
,k

+Hn
θ,z

i+1
2
,j+1

2
,k

)
,

where ∆ = ∆t∆x∆y∆z. By completing squares, we get that

‖E(1)
x − 1

2
∆tξ1‖2 + ‖H(1)

z − 1

2
∆tξ6‖2 = ‖En

θ,x +
1

2
∆tξ1‖2 + ‖Hn

θ,z +
1

2
∆tξ6‖2.

Similarly for the systems (101) and (102), we get

‖E(1)
y − 1

2
∆tξ2‖2 + ‖H(1)

x − 1

2
∆tξ4‖2 = ‖En

θ,y +
1

2
∆tξ2‖2 + ‖Hn

θ,x +
1

2
∆tξ4‖2,

and

‖E(1)
z − 1

2
∆tξ3‖2 + ‖H(1)

y − 1

2
∆tξ5‖2 = ‖En

θ,z +
1

2
∆tξ3‖2 + ‖Hn

θ,y +
1

2
∆tξ5‖2.

Combining the above three equations, we have

‖~E(1) − 1

2
∆t~ξE‖2 + ‖ ~H(1) − 1

2
∆t~ξH‖2 = ‖~En

θ +
1

2
∆t~ξE‖2 + ‖ ~Hn

θ +
1

2
∆t~ξH‖2.(103)

Similarly, we apply the energy method to equations (97), (98) and (99) to get

‖ ~̂E
(1)

− 1

2
∆t~̂ξE‖2 + ‖ ~̂H

(1)

− 1

2
∆t~̂ξH‖2 = ‖~En

θ +
1

2
∆t~̂ξE‖2 + ‖ ~Hn

θ +
1

2
∆t~̂ξH‖2,(104)

‖~E(2) − 1

2
∆t~ηE‖2 + ‖ ~H(2) − 1

2
∆t~ηH‖2 = ‖~E(1) +

1

2
∆t~ηE‖2 + ‖ ~H(1) +

1

2
∆t~ηH‖2,(105)

and

‖ ~̂E
(2)

− 1

2
∆t~̂ηE‖2 + ‖ ~̂H

(2)

− 1

2
∆t~̂ηH‖2 = ‖ ~̂E

(1)

+
1

2
∆t~̂ηE‖2 + ‖ ~̂H

(1)

+
1

2
∆t~̂ηH‖2.(106)
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The difference between the exact and WSS solutions for the electric field at time tn+1 is
computed as

E(tn+1)−En+1
θ = θ

(
E(tn+1)−E(2)

)
+ (1− θ)

(
E(tn+1)− Ê(2)

)

= θ
(
E(tn+1)− Ẽ(2) + Ẽ(2) −E(2)

)
+ (1− θ)

(
E(tn+1)− ˜̂E

(2)

+
˜̂
E

(2)

− Ê(2)

)

= θ
(
E(tn+1)− Ẽ(2) + ~E(2)

)
+ (1− θ)

(
E(tn+1)− ˜̂E

(2)

+ ~̂E
(2)
)

= E(tn+1)−
(
θẼ(2) + (1− θ)

˜̂
E

(2)
)
+ θ~E(2) + (1− θ) ~̂E

(2)

.

(107)

Similarly, for the magnetic field we have

(108) H(tn+1)−Hn+1
θ = H(tn+1)−

(
θH̃(2) + (1− θ)

˜̂
H

(2)
)
+ θ ~H(2) + (1− θ) ~̂H

(2)

.

Using the triangle inequality, and identities (107) and (108) we have

(
‖E(tn+1)−En+1

θ ‖2 + ‖H(tn+1)−Hn+1
θ ‖2

) 1
2

≤
[
‖E(tn+1)−

(
θẼ(2) + (1− θ)

˜̂
E

(2))
‖2 + ‖H(tn+1)−

(
θH̃(2) + (1− θ)

˜̂
H

(2))
‖2
] 1

2

+
[
‖θ~E(2)‖2 + ‖θ ~H(2)‖2

] 1
2

+
[
‖(1− θ) ~̂E

(2)

‖2 + ‖(1− θ) ~̂H
(2)

‖2
] 1

2

.

(109)

From the definition of the intermediate variable (79), we have

(
E(tn+1)

H(tn+1)

)
= θ

(
Ẽ(2)

H̃(2)

)
+ (1− θ)

( ˜̂
E

(2)

˜̂
H

(2)

)
.

So the first term on the right hand side in the inequality (109) is zero. Thus the inequality
(109) becomes

(∥∥E(tn+1)−En+1
θ

∥∥2 +
∥∥H(tn+1)−Hn+1

θ

∥∥2
) 1

2

≤ θ
[
‖~E(2)‖2 + ‖ ~H(2)‖2

] 1
2

+ (1− θ)
[
‖ ~̂E

(2)

‖2 + ‖ ~̂H
(2)

‖2
] 1

2

.(110)

Consider the first term on the right hand side of the inequality (110). By using (105) we
get
[
‖~E(2)‖2 + ‖ ~H(2)‖2

] 1
2 ≤

(
‖~E(2) − ∆t

2
~ηE‖2 + ‖ ~H(2) − ∆t

2
~ηH‖2

) 1
2

+
∆t

2

(
‖~ηE‖2 + ‖~ηH‖2

) 1
2

≤
(
‖~E(1) +

∆t

2
~ηE‖2 + ‖ ~H(1) +

∆t

2
~ηH‖2

) 1
2

+
∆t

2

(
‖~ηE‖2 + ‖~ηH‖2

) 1
2

≤
(
‖~E(1)‖2 + ‖ ~H(1)‖2

) 1
2

+∆t
(
‖~ηE‖2 + ‖~ηH‖2

) 1
2 .(111)

Similarly, we can show that
(
‖~E(1)‖2 + ‖ ~H(1)‖2

) 1
2 ≤

(
‖~En

θ ‖2 + ‖ ~Hn
θ ‖2
) 1

2

+∆t
(
‖~ξE‖2 + ‖~ξH‖2

) 1
2

.(112)

So substituting (112) into (111) we get

[
‖~E(2)‖2 + ‖ ~H(2)‖2

] 1
2 ≤

(
‖~En

θ ‖2 + ‖ ~Hn
θ ‖2
) 1

2

(113)

+ ∆t
(
‖~ξE‖2 + ‖~ξH‖2

) 1
2

+∆t
(
‖~ηE‖2 + ‖~ηH‖2

) 1
2 .
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Consider the case θ 6= 0.5. From the smoothness assumption on E and H in Proposition

2, ‖~ηE‖, ‖~ηH‖, ‖~ξE‖, ‖~ξH‖ are bounded by

C1,θ(∆t+∆x2 +∆y2 +∆z2),

where C1,θ is a constant independent of ∆t,∆x,∆y,∆z. Thus the inequality (113) can be
rewritten as

[
‖~E(2)‖2 + ‖ ~H(2)‖2

] 1
2 ≤

(
‖~En

θ ‖2 + ‖ ~Hn
θ ‖2
) 1

2

+ C1,θ∆t
(
∆t+∆x2 +∆y2 +∆z2

)
.(114)

Similarly, ‖~̂ηE‖, ‖~̂ηH‖, ‖~̂ξE‖, ‖~̂ξH‖ are bounded by

C2,θ(∆t+∆x2 +∆y2 +∆z2),

where C2,θ is a constant independent of ∆t,∆x,∆y,∆z. So we get that the second term
on the right hand side of (110) is bounded as

[
‖ ~̂E

(2)

‖2 + ‖ ~̂H
(2)

‖2
] 1

2 ≤
(
‖~En

θ ‖2 + ‖ ~Hn
θ ‖2
) 1

2

+ C2,θ∆t
(
∆t+∆x2 +∆y2 +∆z2

)
.(115)

Substituting (114) and (115) into (110), we have

(
‖E(tn+1)−En+1

θ ‖2 + ‖H(tn+1)−Hn+1
θ ‖2

) 1
2

≤ θ
[(

‖~En
θ ‖2 + ‖ ~Hn

θ ‖2
) 1

2

+ C1,θ∆t
(
∆t+∆x2 +∆y2 +∆z2

) ]

+ (1− θ)
[(

‖~En
θ ‖2 + ‖ ~Hn

θ ‖2
) 1

2

+ C2,θ∆t
(
∆t+∆x2 +∆y2 +∆z2

) ]

≤
(
‖~En

θ ‖2 + ‖ ~Hn
θ ‖2
) 1

2

+Kθ∆t(∆t+∆x2 +∆y2 +∆z2)

≤
(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

+Kθ∆t(∆t+∆x2 +∆y2 +∆z2),

(116)

where the constant Kθ is independent of ∆t,∆x,∆y and ∆z. Applying (116) recursively
from time level n to 0 and using the fact that N∆t = T , we get

(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

≤
(∥∥E(t0)−E0

θ

∥∥2 +
∥∥H(t0)−H0

θ

∥∥2
) 1

2

+ nKθ∆t(∆t+∆x2 +∆y2 +∆z2)

≤
(∥∥E(t0)−E0

θ

∥∥2 +
∥∥H(t0)−H0

θ

∥∥2
) 1

2

+KθN∆t(∆t+∆x2 +∆y2 +∆z2)

≤
(∥∥E(t0)−E0

θ

∥∥2 +
∥∥H(t0)−H0

θ

∥∥2
) 1

2

+KθT (∆t+∆x2 +∆y2 +∆z2).

So we have

max
0≤n≤N

(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

≤
(∥∥E(t0)−E0

θ

∥∥2 +
∥∥H(t0)−H0

θ

∥∥2
) 1

2

+KθT (∆t+∆x2 +∆y2 +∆z2).

Similarly, for the case θ = 0.5 we obtain

max
0≤n≤N

(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

≤
(∥∥E(t0)−E0

θ

∥∥2 +
∥∥H(t0)−H0

θ

∥∥2
) 1

2

+KT (∆t2 +∆x2 +∆y2 +∆z2),

where K is independent of ∆t,∆x,∆y and ∆z. �
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8. Discrete Divergence of Solutions of Maxwell WSS-FDTD

In this section, we will define the discrete divergence operator and analyze the discrete
divergence of the solution of the Maxwell WSS-FDTD scheme for any given value of θ ∈ [0, 1].
We define the vertex based and cell-centered based meshes, respectively, as

ΩdivE
h := {(xi, yj , zk) | 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K} ,

and

ΩdivH
h :=

{(
xi+ 1

2
, yj+ 1

2
, zk+ 1

2

)
| 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1

}
,

Let F be one of the the field variables E or H. We define the discrete divergence operator
divh as

divh := [δx δy δz].

Then the discrete divergence of electric fields gives us a new scalar field defined on the
vertex based mesh ΩdivE

h , while the discrete divergence of magnetic fields produces a new
scalar field defined on the cell-centered mesh ΩdivH

h . It is easy to see that the following
properties hold for divh in either case. It is a linear operator, and

divhcurlh = [0 0 0], and divh(curlh)
T = [0 0 0].

We also define the discrete vector divergence operator Divh by

Divh =

(
divh 0
0 divh

)
,

operating on vector fields of unknowns of the form (E,H)T , and producing a vector field
defined on the mesh ΩdivE

h ×ΩdivH
h . The size of the matrix 0 in Divh is 1×3. The operator

Divh is linear and DivhAh = 0, a 2× 6 zero matrix.
Next, we develop some identities to analyze the discrete divergence of the solution of

the Maxwell WSS-FDTD method for given θ ∈ [0, 1]. For convenience, we introduce the
notation

Wα =

(
E(α)

H(α)

)
, Ŵ

α
=

(
Ê(α)

Ĥ(α)

)
, and Wβ

θ =

(
Eβ

θ

Hβ
θ

)
,

where α ∈ {1, 2} and β ∈ {n, n+ 1}. We can then rewrite equation (29a) as




W2 −W1 =
△t

2
A−

h (W
2 +W1),

Ŵ
2 − Ŵ

1
=

△t

2
A+

h (Ŵ
2
+ Ŵ

1
).

(117)

Combining the above equations, we get that

Wn+1
θ −

(
θW1 + (1− θ)Ŵ

1
)
=

△t

2

(
θA−

h (W
2 +W1) + (1− θ)A+

h (Ŵ
2
+ Ŵ

1
)
)
.

(118)

Similarly, we can rewrite equation (28a) as




W1 −Wn
θ =

△t

2
A+

h (W
1 +Wn

θ ),

Ŵ
1 −Wn

θ =
△t

2
A−

h (Ŵ
1
+Wn

θ ),

(119)

from which we get

(
θW1 + (1− θ)Ŵ

1
)
−Wn

θ =
△t

2

(
θA+

h (W
1 +Wn

θ ) + (1− θ)A−
h (Ŵ

1
+Wn

θ )
)
.(120)
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Adding equation (118) and equation(120), we obtain

Wn+1
θ −Wn

θ =
△t

2

(
θA+

h + (1− θ)A−
h

)
Wn

θ +
△t

2
Ah

(
θW1 + (1− θ)Ŵ

1
)

+
△t

2

(
θA−

h W
2 + (1− θ)A+

h Ŵ
2
)
.(121)

Multiplying the first equation in system (119) by θA−
h and the second equation by

(1− θ)A+
h , we obtain

θA−
h W

1 = θA−
h W

n
θ + θ

△t

2
A−

h A
+
h (W

1 +Wn
θ ),

and
(1− θ)A+

h Ŵ
1
= (1− θ)A+

hW
n
θ + (1− θ)

△t

2
A+

hA
−
h (Ŵ

1
+Wn

θ ).

Adding the above two equations together, we get

θA−
h W

1 + (1− θ)A+
h Ŵ

1

(122)

= θA−
h W

n
θ + (1− θ)A+

hW
n
θ +

△t

2

(
θA−

h A
+
h (W

1 +Wn
θ ) + (1− θ)A+

hA
−
h (Ŵ

1
+Wn

θ )
)
.

Similarly, from the system (117), we produce the identity

θA−
h W

2 + (1− θ)A+
h Ŵ

2

(123)

= θA−
h W

1 + (1− θ)A+
h Ŵ

1
+

△t

2

(
θ(A−

h )
2(W2 +W1) + (1− θ)(A+

h )
2(Ŵ

2
+ Ŵ

1
)
)
.

Substituting (122) into (123), we obtain

θA−
h W

2 + (1− θ)A+
h Ŵ

2
= θA−

h W
n
θ + (1− θ)A+

hW
n
θ

+
△t

2

(
θA−

h A
+
h (W

1 +Wn
θ ) + (1− θ)A+

hA
−
h (Ŵ

1
+Wn

θ )
)

+
△t

2

(
θ(A−

h )
2(W2 +W1) + (1− θ)(A+

h )
2(Ŵ

2
+ Ŵ

1
)
)
.(124)

Substituting (124) into (121), we get

Wn+1
θ −Wn

θ =
△t

2
Ah

(
Wn

θ + θW1 + (1− θ)Ŵ
1
)

+
△t2

4

(
θA−

h A
+
h (W

1 +Wn
θ ) + (1− θ)A+

hA
−
h (Ŵ

1
+Wn

θ )
)

+
△t2

4

(
θ(A−

h )
2(W2 +W1) + (1− θ)(A+

h )
2(Ŵ

2
+ Ŵ

1
)
)
.(125)

From equation (118), we have

θW1 + (1− θ)Ŵ
1
= Wn+1

θ − △t

2

(
θA−

h (W
2 +W1) + (1− θ)A+

h (Ŵ
2
+ Ŵ

1
)
)
.

Substituting this equation into (125), we get

Wn+1
θ −Wn

θ =
△t

2
Ah

(
Wn+1

θ +Wn
θ

)

− △t2

4

(
θAhA

−
h (W

2 +W1) + (1− θ)AhA
+
h (Ŵ

2
+ Ŵ

1
)
)

+
△t2

4

(
θA−

h A
+
h (W

1 +Wn
θ ) + (1− θ)A+

hA
−
h (Ŵ

1
+Wn

θ )
)

+
△t2

4

(
θ(A−

h )
2(W2 +W1) + (1− θ)(A+

h )
2(Ŵ

2
+ Ŵ

1
)
)
.(126)
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Using the results from (117) and (119) and rearranging terms, equation (126) becomes

Wn+1
θ −Wn

θ

△t
=

Ah

2

(
Wn+1

θ +Wn
θ

)
+

△t

2
BθW

n
θ +

△t2

4
CθW

n
θ +

△t3

8
DθW

n
θ +O(△t4)

(127)

where

Bθ = (1− 2θ)[A+
h ,A

−
h ]

Cθ = (1− 2θ)
(
A+

hA
−
h A

−
h −A−

h A
+
hA

+
h

)
− 2

(
θA+

hA
−
h A

+
h + (1− θ)A−

h A
+
hA

−
h

)

Dθ = (1− 2θ)
(
A+

hA
−
h A

−
h A

−
h −A−

h A
+
hA

+
hA

+
h

)
− 2θ

(
A+

hA
−
h A

+
hA

+
h +A+

hA
−
h A

−
h A

+
h

)

− 2(1− θ)
(
A−

h A
+
hA

−
h A

−
h +A−

h A
+
hA

+
hA

−
h

)
.

Finally, using the identity (127), we have the following result.

Proposition 3. Suppose that the exact solutions E,H satisfy

E,∈ C3
(
[0, T ] :

[
C3(Ω)

]3)
and H, ∈ C3

(
[0, T ] :

[
C3(Ω)

]3)
,

then for fixed T = N△t > 0, the discrete divergence of the solutions to the Maxwell

WSS-FDTD schemes for θ ∈ [0, 1], given in Algorithm 3, satisfy the identity

DivhW
N
θ = DivhW

0
θ + T

△t

2
Divh

(
BθW

0
θ

)
(128)

+ T
△t2

4

[
Divh

(
CθW

0
θ

)
+

1

N
Divh

(
BθAh

N−1∑

k=1

Sk
θ

)]

+ T
△t3

8

[
Divh

(
DθW

0
θ + (N − 1)B2

θW
0
θ

)
+

1

N
Divh

(
CθAh

N−1∑

k=1

Sk
θ

)]
+O(△t5),

for θ 6= 0.5, and for θ = 0.5

DivhW
N
θ = DivhW

0
θ + T

△t3

8
Divh

(
D 1

2
W0

θ

)
+O(△t5),(129)

where

SM
θ =




WM

θ + 2

M−1∑

k=1

Wk
θ +W0

θ, M ≥ 2

W1
θ +W0

θ, M = 1

Proof. From equation (127), we have

Wn+1
θ = Wn

θ +Ah
△t

2

(
Wn+1

θ +Wn
θ

)
+

△t2

2
BθW

n
θ +

△t3

4
CθW

n
θ +

△t4

8
DθW

n
θ(130)

+O(△t5).

Recursively applying (130), we obtain

WN
θ = W0

θ +Ah
△t

2
SN
θ + T

△t

2
BθW

0
θ + T

△t2

4

(
CθW

0
θ +

1

N
BθA

N−1∑

k=1

Sk
θ

)

+ T
△t3

8

(
(
Dθ + (N − 1)B2

θ

)
W0

θ +
1

N
CθA

N−1∑

k=1

Sk
θ

)
+O(△t5).(131)

For the case θ 6= 0.5, the first identity (128) can be proved by applying Divh to both
sides in (131), and using the fact that DivhAh = 0. In the case θ = 0.5, the operators B 1

2

and C 1
2
are zero while the operator

D 1
2
= −

(
A+

hA
−
h A

+
hA

+
h +A+

hA
−
h A

−
h A

+
hA

−
h A

+
hA

−
h A

−
h +A−

h A
+
hA

+
hA

−
h

)
6= 0.
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Thus, applying Divh to both sides in (131), and using the fact that DivhAh = 0, the
second identity (129) holds for θ = 0.5.

�

Our analysis shows that the discrete divergence identities (128) and (129) give us
accuracy of first order in the discrete divergence of solutions of the Maxwell WSS-FDTD

method when θ 6= 0.5 and the third order of accuracy when θ = 0.5. In Section 9 we will
illustrate this theoretical result with numerical simulations.

9. Numerical Results for the Maxwell WSS-FDTD Methods

In this section, we perform numerical simulations to illustrate our theoretical results for
the Maxwell WSS-FDTD schemes. We choose the domain Ω = [0, 1]× [0, 1]× [0, 1]. We also
assume a uniform mesh with △x = △y = △z = △t. We consider the exact solution [7]

of the three dimensional Maxwell’s equations, E = (Ex, Ey, Ez)
T and H = (Hx, Hy, Hz)

T

given by

Ex =
ky − kz
ǫ
√
µω

cos(ωπt) cos(kxπx) sin(kyπy) sin(kzπz),

Ey =
kz − kx
ǫ
√
µω

cos(ωπt) sin(kxπx) cos(kyπy) sin(kzπz),

Ez =
kx − ky
ǫ
√
µω

cos(ωπt) sin(kxπx) sin(kyπy) cos(kzπz),(132)

Hx = sin(ωπt) sin(kxπx) cos(kyπy) cos(kzπz),

Hy = sin(ωπt) cos(kxπx) sin(kyπy) cos(kzπz),

Hz = sin(ωπt) cos(kxπx) cos(kyπy) sin(kzπz),

where k = (kx, ky, kz)
T is the wave vector satisfying the dispersion relation ω2 = c2(k2

x +

k2
y + k2

z). In our simulation, we use the wave vector k = kx(1, 2,−3)T , for different values
of kx, with the base case kx = 1, and we assume that ǫ = µ0 = c = 1.

9.1. Numerical Computation of the Discrete Energy. The exact solution (132)
satisfies the PEC boundary conditions (5), E× ~n = 0 on the boundary of Ω. The energy
of the exact solution can be computed as

(133) E(t) :=
(∫

Ω

|E(x, t)|2 dx+

∫

Ω

|H(x, t)|2 dx
) 1

2

=

√
3

8
,

where E(t), as defined above, is the energy associated to the electromagnetic field. To
analyze how well the discrete energy of the Maxwell WSS-FDTD solutions approximates the
continuous exact energy function, we compute several measures of the discrete energy
below.

We first define the Relative Energy Error in the energy of the Maxwell WSS-FDTD meth-
ods as

(134) Relative Energy Error := max
0≤n≤N

|En
θ − E(t)|
|E(t)| ,

where the energy of the Maxwell WSS-FDTD solution for given θ ∈ [0, 1], is defined as

(135) En
θ :=

(
‖En

θ ‖2 + ‖Hn
θ ‖2
) 1

2 .

In Table (9.1) we present the relative energy error (134)-(135) of the Maxwell WSS-FDTD

schemes for various values of θ, using ∆t = 0.02 (recall that mesh and time steps are chosen
to be identical). As seen in this table when θ = 0 or 1, the relative error is essentially
zero (machine epsilon), which illustrates the energy conservation of the solution of the
sequential splitting schemes. When θ ∈ (0, 1) the discrete energy decays. Thus, the
relative energy error is nonzero in this case, with the error being the largest for the Maxwell
WSS-FDTD scheme with θ = 0.5, for which the energy decay is the most significant.
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Table 1. The Relative Energy Error (134) for the Maxwell

WSS-FDTD schemes with wave-vectors kx(1, 2,−3)T .

Relative Energy Error in Maxwell WSS-FDTD

θ kx = 1 kx = 2 kx = 5

0 2.5382 ×10−15 2.5382 ×10−15 2.1756 ×10−15

0.3 0.0029 0.0428 0.7015

0.5 0.0034 0.0508 0.7653

1 2.5382 ×10−15 2.5382×10−15 2.1756 ×10−15

From equation (64), we have the inequalities

1− 2θ(1− θ)

1 + 2θ(1− θ)
≤
(
En+1
θ

En
θ

)2

:=
‖En+1

θ ‖2 + ‖Hn+1
θ ‖2

‖En
θ ‖2 + ‖Hn

θ ‖2
≤ 1.

In Figure 2, we demonstrate the boundedness of the discrete energy ratio
E
n+1

θ

En
θ

of the

Maxwell WSS-FDTD schemes for different values of the parameter θ ∈ [0, 1] chosen equally
spaced with two step sizes △θ = 0.1, and 0.008. We choose the time step to be △t = h,
and space step h = △x = △y = △z = 0.2, 0.1, 0.04, and 0.02. We find that the discrete

energy ratio is less than 1 and bigger than
1− 2θ(1− θ)

1 + 2θ(1− θ)
for any value of θ as shown in

Figure 2. We also see that for ∆t = h = 0.02, the ratio of the discrete energies at times
tn+1 and tn is essentially 1, indicating very low order of energy decay.

Figure 2. The discrete energy ratio
En+1

θ

En
θ

of the Maxwell

WSS-FDTD schemes with (Left Plot) △θ = 0.1, and (Right Plot)
△θ = 0.008. In these plots k = (1, 2,−3)T .

We next demonstrate through our numerical simulations that the discrete energy decay
rate, defined in (65) is third order in time, and the relative change in discrete energy
defined below is fourth order in time. These rates of decay are higher than the rate of
convergence of the Maxwell WSS-FDTD solution (either first order in time for θ 6= 0.5, or
second order in time for θ = 0.5), as demonstrated in the next section. Thus, due to the
high order of the energy decay rate and relative changes in discrete energy, we do not
expect the discrete energy decay to significantly affect the convergence rate of the scheme.

We plot the relative change in discrete energy, defined as

(136) Relative Change in Energy : RE(θ) := max
0≤n≤N

∣∣∣∣
En+1
θ − En

θ

En
θ

∣∣∣∣ ,
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and the maximum energy decay rate defined as

(137) Energy Decay Rate : ED(θ) := max
0≤n≤N

δtEθ(t
n+ 1

2 ) = max
0≤n≤N

∣∣∣∣
En+1
θ − En

θ

∆t

∣∣∣∣ ,

in Figure 3 for different values of the weight parameters θ ∈ (0, 1). The largest mesh and
time step sizes are taken to be h = △x = △y = △z = △t = 0.25, and these values are
successively decreased by half to obtain the corresponding rates in six simulation runs.
These plots demonstrate that the discrete energy decay rate is third order in time, (Right
plot in Figure 3, see equation (74)), while the relative change in discrete energy is fourth
order in time (Left plot, Figure 3).

Figure 3. (Left Plot) Log of the relative change in discrete energy
of the Maxwell WSS-FDTD solution defined in (136). (Right Plot)
The discrete energy decay rate over all time steps defined in (137).
In both plots kx = 1.

9.2. Computation of Convergence Rates. In this section, we compute the conver-
gence rates of the Maxwell WSS-FDTD method for different values of θ using the energy
norm. We define the error in the energy norm between the exact solution given in (132)
and the numerical solution obtained from the Maxwell WSS-FDTD method for θ ∈ [0, 1] as

(138) Errh(θ) := max
0≤n≤N

(
‖E(tn)−En

θ ‖2 + ‖H(tn)−Hn
θ ‖2
) 1

2

E(tn) ,

where E(tn) and H(tn) denotes the exact solutions (132) at time tn, En
θ and Hn

θ denote
the Maxwell WSS-FDTD numerical solutions at tn with weight parameter θ ∈ [0, 1] and
mesh step size h = ∆t, and E(tn) is the exact energy (133) at time tn.
The convergence rate of the Maxwell WSS-FDTD method for given θ ∈ [0, 1] is defined as

(139) Rateh(θ) =

∣∣∣∣∣
log Errn2h(θ)− log Errnh(θ)

log 2h− log h

∣∣∣∣∣.

In Tables 2, and 3, we present convergence results for the Maxwell WSS-FDTD schemes for
varying θ ∈ [0, 1], and wave vectors k = (1, 2,−3)T , and k = (2, 4,−6)T , respectively. The
Maxwell WSS-FDTD schemes achieve first order convergence when the weighted parameter
θ 6= 0.5. The scheme achieves second order of convergence in space when θ = 0.5. Tables
2-3 and Figure 4 demonstrate our analytical results presented in Theorem 4.

9.3. Numerical Convergence of the Discrete Divergence. We define the discrete
infinity norm of the divergence of the electric field solution {En

θ }Nn=0, and the magnetic
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Figure 4. Errors (Errh) defined in (138) displaying convergence
rates of the Maxwell WSS-FDTD solutions for different values of θ
when kx = 1.

Table 2. Errors (defined in (138)) and convergence rates (defined
in (139)) for the Maxwell WSS-FDTD schemes for different θ. In all
cases kx = 1.

Numbers of time steps (N)

θ 10 20 40 80 160

0
Errh 1.001 0.305 0.101 0.041 0.019
Rateh 1.722 1.594 1.286 1.095

0.3
Errh 1.072 0.371 0.101 0.028 0.010
Rateh 1.532 1.879 1.863 1.543

0.5
Errh 1.085 0.384 0.104 0.026 0.007
Rateh 1.498 1.892 1.977 1.995

1
Errh 1.004 0.304 0.101 0.041 0.019
Rateh 1.725 1.596 1.285 1.093

Table 3. Errors (defined in (138)) and convergence rates (defined
in (139)) for the Maxwell WSS-FDTD schemes for different θ. In all
cases kx = 2.

Numbers of time steps (N)

θ 10 20 40 80 160

0
Errh 1.934 1.707 0.579 0.164 0.053
Rateh 0.180 1.559 1.820 1.641

0.3
Errh 1.446 1.545 0.712 0.199 0.052
Rateh 0.095 1.118 1.839 1.928

0.5
Errh 1.375 1.513 0.736 0.206 0.053
Rateh 0.138 1.039 1.836 1.971

1
Errh 1.923 1.704 0.578 0.164 0.052
Rateh 0.174 1.559 1.820 1.642

field solution {Hn
θ }Nn=0, of the Maxwell WSS-FDTD method for given θ ∈ [0, 1], on their
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Figure 5. Rates of convergence of the discrete divergence (defined
in (140)) of the electric field, div(Eθ) (Left plot), and discrete
divergence of the magnetic field, div(Hθ) (Right plot).

respective discrete spatial meshes as

‖div(Eθ)‖∞ = max
1≤i,j,k≤N−1

0≤n≤N

∣∣∣(δxEx)
n
i,j,k + (δyEy)

n
i,j,k + (δzEz)

n
i,j,k

∣∣∣,(140a)

‖div(Hθ)‖∞ = max
0≤i,j,k≤N−1

0≤n≤N

∣∣∣(δxHx)
n
i+ 1

2
,j+ 1

2
,k+ 1

2

+ (δyHy)
n
i+ 1

2
,j+ 1

2
,k+ 1

2

(140b)

+ (δzHz)
n
i+ 1

2
,j+ 1

2
,k+ 1

2

∣∣∣.(140c)

From Table 4 and Table 5 we see that the numerical divergence of the solution of the
Maxwell WSS-FDTD scheme has the first order of accuracy when the weight parameter θ 6=
0.5. Moreover for the weight parameter θ = 0.5, the numerical divergence of the Maxwell

WSS-FDTD solution has the third order of accuracy, which illustrates our theoretical results
on the discrete divergence of these solutions. Note that in these tables Rateh denotes the
rate of convergence of the discrete divergence of discrete electric or magnetic fields. In
Figure 5, the convergence rates are displayed graphically for different values of θ.
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Table 4. Convergence rates of the discrete divergence of the elec-
tric field Eθ, defined in (140).

Numbers of time steps (N)

θ 10 20 40 80 160

0
||div(Eθ)||∞ 3.1475 1.8077 0.8911 0.4393 0.2179
Rateh 0.8001 1.0206 1.0204 1.0116

0.3
||div(Eθ)||∞ 1.3509 0.7261 0.3521 0.1743 0.0867
Rateh 0.8957 1.0441 1.0148 1.0067

θ = 0.5
||div(Eθ)||∞ 0.3041 0.0436 0.0053 0.0006 0.0001
Rateh 2.8031 3.0477 3.0436 3.0301

θ = 1
||div(Eθ)||∞ 3.3876 1.8118 0.8911 0.4394 0.2179
Rateh 0.9029 1.0238 1.0200 1.0120

Table 5. Convergence rates of the divergence of the electric field
Hθ, defined in (140).

Numbers of time steps (N)

θ 10 20 40 80 160

θ = 0
||div(Hθ)||∞ 4.2543 2.4613 1.2994 0.6570 0.3294
Rateh 0.7895 0.9216 0.9839 0.9960

θ = 0.3
||div(Hθ)||∞ 2.1682 1.0663 0.5321 0.2643 0.1320
Rateh 1.0240 1.0029 1.0096 1.0018

θ = 0.5
||div(Hθ)||∞ 0.5291 0.0925 0.0125 0.0016 0.0002
Rateh 2.5166 2.8868 2.9735 2.9932

θ = 1
||div(Hθ)||∞ 4.2637 2.4590 1.2995 0.6570 0.3294
Rateh 0.7940 0.9202 0.9840 0.9960

10. Conclusion

In this paper, we have constructed a family of Weighted Sequential Splitting (WSS)
methods, Maxwell WSS, for Maxwell’s equations in a linear non-dispersive and non-dissipative
dielectric by extending the sequential splitting method constructed and analyzed in [7].
We have designed and analyzed fully discretized versions of the Maxwell WSS splitting
method, called Maxwell WSS-FDTD, by staggering the electric and magnetic components in
space as in the Yee scheme, while for the time discretization we apply the implicit Crank-
Nicolson method. Our theoretical analysis shows that the fully discrete Maxwell WSS-FDTD

scheme is of the first order of accuracy in time when the weight parameter θ 6= 0.5 and
is second order accurate in time for θ = 0.5 (Maxwell SWSS-FDTD). For all values of θ,
the splitting schemes are second order accurate in space. We have proved that the fully
discrete splitting schemes, Maxwell WSS-FDTD, are unconditionally stable for all values of
θ. The Maxwell WSS-FDTD methods satisfy a discrete energy conservation for the weighted
parameter θ = 0, 1 (proved in [7]), but the discrete energy decays for θ ∈ (0, 1) (result of
this paper). While energy decay is undesirable for this non-dispersive and non-dissipative
wave propagation problem, we prove that the decay in the energy is of fourth order in
time for any value of θ ∈ (0, 1) (or cubic in time if we consider the energy decay rate),
and thus quite small for a method that is overall first or second order accurate in time.
With such a small energy decay, we do not expect dissipation to overwhelm the discrete
solution over long time integration.

We also analyze the (discrete) divergence of the solutions of the Maxwell WSS-FDTD

methods and prove that the divergence is approximated to first order for θ 6= 0.5, but for
θ = 0.5 (SWSS), we are able to get a third order approximation to the exact divergence.
The Strang symmetrized splitting FDTD method analyzed in [7] has a discrete solution
with a second order accurate approximation to the exact divergence. Thus, the Maxwell
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SWSS-FDTD method for θ = 0.5 has a distinct advantage over the Strang symmetrized
splitting method analyzed in [7]. In addition, we note that the implementation of the
Maxwell SWSS-FDTD method for the case θ = 0.5 can be parallelized to give a more effi-
cient splitting scheme than the Strang symmetrized scheme, since the WSS scheme has
two sequential stages with several decoupled 1D Maxwell systems in each stage, while
the Strang symmetrized scheme in [7] has three sequential stages with several decoupled
1D Maxwell systems in each stage. However, the Strang symmetrized splitting method
conserves the EM energy, while the Maxwell SWSS-FDTD method does not. Given the fact
that the Strang symmetrized splitting and the Maxwell SWSS-FDTD splitting for θ = 0.5
are both second order accurate in space and time, the above remarks indicate that our new
scheme has some advantages as well as disadvantages (energy decay) to standard operator
splitting schemes in the literature.

We have provided numerical experiments that confirm our theoretical results on sta-
bility and order of accuracy of all our Maxwell WSS-FDTD schemes, energy decay and
approximation of the discrete divergence.
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[13] S. G. Garćıa, R. G. Rubio, A. R. Bretones, and R. G. Mart́ın, Extension of the ADI-

FDTD Method to Debye Media, IEEE Transactions on Antennas and Propagation, 51 (2003),

p. 3183.
[14] J. Lee and B. Fornberg, Some unconditionally stable time stepping methods for the 3D

Maxwell’s equations, Journal of Computational and Applied Mathematics, 166 (2004), p-
p. 497–523.



784

[15] J. Li and S. Shields, Superconvergence analysis of Yee scheme for metamaterial Maxwell’s
equations on non-uniform rectangular meshes, Numerische Mathematik, 134 (2016), pp. 741–
781.

[16] W. Li and D. Liang, Symmetric Energy-Conserved S-FDTD Scheme for Two-Dimensional
Maxwell’s Equations in Negative Index Metamaterials, Journal of Scientific Computing, 69

(2016), pp. 696–735.
[17] W. Li, D. Liang, and Y. Lin, Global energy-tracking identities and global energy-tracking

splitting FDTD schemes for the Drude Models of Maxwell’s equations in three-dimensional
metamaterials, Numerical Methods for Partial Differential Equations, 33 (2017), pp. 763–785.

[18] D. Liang and Q. Yuan, The spatial fourth-order energy-conserved S-FDTD scheme for
Maxwell’s equations, Journal of Computational Physics, 243 (2013), pp. 344–364.
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